ЗАЩИТА РАСТЕНИЙ. СБОРНИК НАУЧНЫХ ТРУДОВ. ВЫПУСК 25. МИНСК: БЕЛНИИЗР. –2000. –С.100-112.

ВИДОВОЙ СОСТАВ И СТРУКТУРА НАСЕЛЕНИЯ ЖУЖЕЛИЦ (COLEOPTERA: CARABIDAE), ОБИТАЮЩИХ НА ПОЛЯХ КАРТОФЕЛЯ

О.Р. АЛЕКСАНДРОВИЧ

Варминьско-Мазурский университет в Ольштыне, Польша

ВВЕДЕНИЕ

Жужелицы - одна из наиболее многочисленных групп почвообитающих жесткокрылых в агроценозах. На полях Беларуси они составляют 30-60% всех беспозвоночных (Самерсов,1988). Жуки этого семейства широко известны как активные хищники всех фаз развития опасного вредителя картофеля - колорадского жука. Из 190 видов жуков-энтомофагов данного вредителя, 145 относятся к жужелицам (Гусев,1991). Доказана роль жужелиц как афидофагов, хищничающих на персиковой и настурциевой тлях (Воіteau,1986) В этой связи изучение жужелиц полей картофеля имеет вполне определенный практический интерес.

Отсутствие публикаций по фауне и экологии жужелиц полей картофеля в Беларуси обусловило выбор объекта исследования.

МЕСТО И МЕТОДЫ ИССЛЕДОВАНИЙ

Исследования проводились на поле севооборота в окрестностях д. Омговичи (20 км восточнее г. Слуцка), размещенных на дерново-подзолистой супесчаной почве, подстилаемой моренным суглинком.

Картофельное поле занимало 28 га, предшествующей культурой была озимая рожь. Осенью была произведена основная обработка почвы, внесены органические удобрения (навоз, 20 т/га) и калийные удобрения из расчета 3 ц/га хлорида калия. Весной проведена культивация в два следа и внесены азотные удобрения (карбамид) из расчета 2 ц/га, фосфорные - двойной суперфосфат - 2 ц/га, а также проведена предпосевная культивация.

Посадка картофеля произведена была 18-23 апреля. Семена - сорт Пригожий, из расчета на 1 га 55-60 тыс. кустов. Уход за посевами картофеля заключался в слепых окучиваниях на 5-10 день и окучивании без боронования по всходам. Перед третьим окучиванием, 26 июня, был внесен гербицид зенкор из расчета 0,3 кг/га. Внесение фунгицида цинеб для борьбы с фитофторой картофеля производилось 26 июля из расчета 2,5 кг/га. 20 августа было произведено сбивание ботвы. Уборка урожая проводилась с 1 сентября.

Сбор жужелиц проводился с использованием земляных ловушек, представляющих собой полистироловые стаканы объемом 250 мл и диаметром отверстия 72 мм, заполненные на 1/4 4 % раствором формалина. Ловушки были установлены в 2 ряда по 10 штук (расстояние между ловушками 10 метров) так,

чтобы верхний край ловушки был на уровне почвы. Периодичность выбора материала составляла один раз в 7-10 дней.

Жуков выбирали из каждой ловушки отдельно, материал раскладывался на ватные слои, этикетировался и определялся.

Статистическая обработка проводилась с использованием пакета прикладных статистических программ "Stadia".

При оценке структуры доминирования использована шкала O.Renkonen (1938), согласно которой выделены доминантные (более 5%), субдоминантные (3-5%), рецедентные (1-3%) и субрецедентые (менее 1%) виды.

Для оценки структуры сообщества использовались: индекс разнообразия Шеннона-Уивера: $H'=-\sum p_i lnp_i$; его ошибка: $m^2_{H'}=1/N$ [$1/N(Nln^2N-\sum n_i ln^2n_i)-(H')^2+(S-1)/2N^2+...$]; индекс концентрации доминирования Симпсона: $C=\sum p_i^2$; где во всех случаях p_i - доля вида n в коллекции объемом N.

Формулы для расчетов приведены согласно версии Ю.А. Песенко (1982):

Для описания типов ареалов жужелиц использована терминология К.Б. Городкова (1984). Для оценки спектра жизненных форм имаго использована классификация И.Х Шаровой (1981).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

За период исследований собран 3450 экземпляров жужелиц, принадлежащих к 50 видам (табл. 1).

Динамическая плотность составила $1,62\pm0,08$ экземпляра на ловушкосутки (табл. 1). Показатель уловистости близок к таковому на картофельных полях в Татарстане (Жеребцов,1989) и превышает таковой на полях зерновых культур, свеклы и гороха в Беларуси (Александрович,1996).

Более всего видов установлено в роде *Amara* (9). Пятью видами представлены жуки рода *Bembidion*, четырьмя - *Calathus* и *Harpalus* (табл.1).

Видовое разнообразие на посевах картофеля ниже такового на полях зерновых культур, но выше, чем на посевах гороха и свеклы в Беларуси (Александрович,1996).

Выявлено 4 доминантных вида: Harpalus rufipes, Harpalus griseus, Amara fulva, Calathus melanocephalus, причем Harpalus rufipes составляет почти половину всех собранных жужелиц. К субдоминантам отнесены Calathus fuscipes, Clivina fossor, Broscus cephalotes. Рецеденты представлены 10 видами: Bembidion quadrimaculatum, Amara bifrons, Harpalus calceatus, Bembidion properans, Poecilus versicolor, Calathus ambiguus, Loricera pilicornis, Calathus erratus, Amara consularis, Amara familiaris (табл. 1).

Структуру сообщества можно оценить как монодоминантную, с преобладанием одного вида и незначительном участии других доминантов.

Дополнительным свидетельством монодоминантности является высокая концентрация доминирования (C=0,24), а также низкий показатель индекса разнообразия (H'=2,28±0,03), величина которого уступает таковому на полях зерновых культур (Александрович,1996).

Установленное число видов и состав доминантов близки к таковым на картофельных полях в лесной зоне Средней и Восточной Европы (Thiele,1977; Гусев,1991).

На основании анализа географического распространения видов жужелиц, обитающих на посевах картофеля, установлено 9 типов ареалов. Преобладают широкими типами ареалов, охватывающими виды несколько зоогеографических областей: евро-сибиро-центральноазиатские (10 видов, 8,34% особей), трансевразиатские температные (8 видов, 56,18% особей), циркумтемператные 12,05% видов, особей) западноцентральнопалеарктические (5 видов, 8,93% особей) (рис. 1).

Особенностью зоогеографической структуры агроценоза картофеля является высокое представительство (6 видов) и численность (7,47%) евроказахстанских элементов, свойственных степной зоне.

Отношение к влажности среды, определяемое как тип гигропреферендума - главный абиотический лимитирующий фактор у жужелиц, впрочем как и у остальных насекомых. Результаты лабораторных исследований гигропреферендумов жужелиц, полученные С. Lindroth (1945), позволили разделить большинство видов среднеевропейской фауны на 5 групп: гигрофилы, мезогигрофилы, мезофилы, мезоксерофилы и ксерофилы.

На поле картофеля преобладают мезофильные (24 вида, 72,32% особей), ксерофильные (10 видов, 12,84% особей) и мезоксерофильные (9 видов, 12,74% особей) виды (рис. 2). Мезогигрофильные и гигрофильные виды представлены единичными особями.

Группа мезофилов характеризуется значительным обилием не только по численности, но и по видовому составу. Среди них доминанты *Harpalus rufipes, Calathus melanocephalus*, субдоминанты *Calathus fuscipes, Clivina fossor* и рецеденты *Bembidion quadrimaculatum, Bembidion properans, Poecilus versicolor, Amara familiaris.*

Наиболее многочисленными ксерофильными видами являются доминант *Harpalus griseus*, субдоминант *Broscus cephalotes* и рецедент *Harpalus calceatus*.

Среди мезоксерофилов представлены субдоминант *Amara fulva* и рецеденты *Amara bifrons, Calathus ambiguus, Calathus erratus, Amara consularis.*

Среди гигрофилов только численность Loricera pilicornis превысила 1%.

Соотношение групп с различными типами гигропреферендумов обнаруживает, что микроклиматические условия на посевах картофеля на супесчаных почвах благоприятны для развития мезофильных, мезоксерофильных и ксерофильных видов.

Спектр жизненных форм имаго жужелиц на посевах картофеля включает 8 групп, относящихся к классам зоофагов и миксофитофагов. По числу видов преобладают зоофаги (27 видов, 32,84% особей), по численности - миксофитофаги (23 вида, 67,16% особей) (рис. 3). На полях картофеля спектр жизненных форм жужелиц уже, чем на полях зерновых культур, где выявлено 15 групп жизненных форм имаго жужелиц (Александрович,1996).

Зоофаги - облигатные хищники или виды со смешанным питанием, дополнительно использующие растительную пищу. Класс зоофагов подразделяется на подклассы по специализации к обитанию в определенных ярусах биоценоза. Подкласс эпигеобиос представлен 2 видами рода *Calosoma:* auropunctatum и investigator, отловленными в единичных экземплярах.

Самый обширный подкласс среди зоофагов - подкласс стратобиос. Это обитатели подстилки и скважин почвы, имеющие сходный облик в связи с полускрытым или скрытым образом жизни и особенностями движения в занимаемом ярусе. Стратобионты подразделяются на две серии групп жизненных форм: скважники и зарывающиеся. К серии стратобионтовскважников подстилочных (7 видов, 14,28% особей) относятся жужелицы, передвигающиеся в подстилке и почве по скважинам, среди которых доминант Calathus melanocephalus, субдоминант Calathus fuscipes и рецеденты Calathus erratus и Calathus ambiguus.

Группа стратобионты поверхностно-подстилочные занимает промежуточное положение между эпигеобионтами и стратобионтами. Это подстилочные жужелицы, ведущие относительно скрытый образ жизни, часто с дневной активностью. К ним относится 7 видов, и 7,01% особей, среди которых представлены рецеденты: Bembidion properans, Bembidion quadrimaculatum, Loricera pilicornis.

Стратобионты зарывающиеся объединяет подстилочно-почвенных жужелиц (8 видов, 3,52%, среди которых *Poecilus versicolor, Poecilus cupreus, Pterostichus melanarius* и др.), охотящихся в подстилке и на поверхности почвы и способных зарываться в рыхлую почву для укрытия или для откладки яиц. На зерновых полях в Беларуси эти формы преобладают (Александрович,1996).

Группа геобионты бегающе-роющие объединяет слабо специализированных к рытью жужелиц с бегательно-опорными ногами, способных активно зарываться только в рыхлую почву. К данной группе отнесен субдоминант $Broscus\ cephalotes\ (3,12\ \%\ ocoбей).$

Группа геобионты роющие включает наиболее специализированные роющие формы, охотящиеся почвенных ходах. Они представлены 2 видами: доминантом *Clivina fossor* и единичным *Dyschiriodes globosus*.

К миксофитофагам относятся жужелицы, приспособленные к питанию растительной пищей. Однако, среди них большинство питается наряду с растительной пищей гниющими органическими остатками и иногда хищничают. Миксофитофаги подразделяются на подклассы в зависимости от специализации в различных ярусах и от типа движения.

Подкласс стратохортобиос включает специализированных фитофагов, хорошо лазающих по растениям и укрывающихся в подстилке и скважинах почвы. Они составляют самую многочисленную группу жизненных форм (6 видов, 55,89 % особей) среди которых доминанты *Harpalus rufipes* и *Harpalus griseus*.

Подкласс геохортобиос образуют специализированные фитофаги, как облигатные, так и со смешанным питанием, хорошо лазающие и способные зарываться в почву, представленные на посевах картофеля группой геохортобионтов гарпалоидных (17 видов, 11,28 % особей). Среди них доминант Amara fulva и рецеденты Amara bifrons, Amara consularis, Amara familiaris, Harpalus calceatus.

Таким образом, жужелицы-зоофаги представлены в спектре жизненных форм 6 группами, а жужелицы-миксофитофаги - 3 группами. По числу видов преобладают зоофаги из напочвенного и подстилочного ярусов, стратобионты - скважники поверхностно-подстилочные и стратобионты-скважники подстилочные. Среди миксофитофагов обычны формы, обитающие в подстилке и в верхнем слое почвы без резкой специализации к рытью в почве. Преимущественно это геохортобионты гарпалоидные.

Преобладание по численности миксофитофагов с открытым или полускрытым образом жизни связано с особенностями условий в данных агроценозах.

Многообразие жизненных форм жужелиц на полях картофеля позволяет судить о трофическом составе населения жужелиц и о наиболее населенных ярусах почвы. Это имеет существенное практическое значение для хозяйственной оценки жужелиц агроценоза картофеля как энтомофагов колорадского жука.

Среди миксофитофагов, которые по числу видов немного уступают зоофагам, а по численности превышают их, на полях отсутствуют специализированные вредители сельскохозяйственных культур. Большинство видов питаются семенами сорняков и хищничают, не нанося вреда растениям картофеля, что позволяет в целом оценить жужелиц картофеля как полезных энтомофагов.

Сезонная динамика активности жуков определена сложными популяционными механизмами, такими, как размножение, гибель жуков перезимовавшего поколения и появление молодых жуков, вышедших из куколок. Для европейских видов жужелиц типы сезонной активности и сопряженные с ними типы размножения описаны H.-U. Thiele (1977).

Жужелицы посевов картофеля по типам размножения подразделяются на три неравные по видовому разнообразию группы: весенние, осенние и мультисезонные - 30, 2 и 18 видов соответственно.

К группе с весенним типом размножения относится 16,61% особей, среди которых субдоминант *Clivina fossor* и рецеденты *Bembidion quadrimaculatum*, *B. properans*, *Poecilus versicolor*, *Loricera pilicornis*, *Amara familiaris*.

Наиболее многочисленной группой являются жужелицы с мультисезонным типом размножения, составляющие 47,36% особей, среди которых доминант *Harpalus rufipes*.

Жужелицы с осенним типом размножения составляют 36,03% особей, включающих доминантов Calathus melanocephalus и Harpalus griseus,

субдоминантов Calathus fuscipes, C. erratus, C. ambiguus, Harpalus calceatus, Amara bifrons, A. consularis.

Таким образом, наиболее многочисленной группой жужелиц исследованных полей являются жуки с мультисезонным типом размножения.

Малочисленность весенних видов на исследованных полях можно объяснить особенностью агротехники картофеля: поздние сроки посадки и появления всходов. Вероятно, массовая активность весенних видов жужелиц наблюдается до появления всходов картофеля и в наших материалах они не представлены.

Сезонная динамика активности жужелиц имеет характер ломаной кривой с максимумом в конце августа (рис. 4). Общая динамика численности сформирована за счет активности массовых видов: *Harpalus rufipes, H. griseus, Amara fulva, Calathus melanocephalus, Clivina fossor*.

Все виды, за исключением весеннего *Clivina fossor*, являются осенними или мультисезонными и размножаются во второй половине лета, что подтверждает и их характер активности.

Снижение активности жужелиц в конце июля совпадает с обработкой картофеля цинебом, а в начале сентября – с уборкой.

Приходящаяся на конец августа максимальная активность жужелиц - потенциальных хищников личинок колорадского жука, совпадает с уходом личинок вредителя на окукливание в почву.

Таким образом, в конце лета и осенью, в связи с наложением максимумов сезонной активности массовых видов, их суммарная активность усиливается, что увеличивает их потенциальную эффективность как энтомофагов колорадского жука.

ВЫВОДЫ

- 1. За период исследований собрано 3450 экземпляров жужелиц, принадлежащих к 50 видам.
- 2. Динамическая плотность составила 1,62±0,08 экземпляра на ловушкосутки
- 3. Выявлено 4 доминантных вида: *Harpalus rufipes, Harpalus griseus, Amara fulva, Calathus melanocephalus,* причем *Harpalus rufipes* составляет почти половину всех собранных жужелиц. К субдоминантам отнесены *Calathus fuscipes, Clivina fossor, Broscus cephalotes.* Рецеденты представлены 10 видами.
- 4. Структуру сообщества можно оценить как монодоминантную, с преобладанием одного вида и незначительном участии других доминантов.
- 5. На основании анализа географического распространения установлено 9 типов ареалов. Преобладают виды с евро-сибиро-центральноазиатскими, трансевразиатскими температными, циркумтемператными и западноцентральнопалеарктическими типами ареалов.
- 6. На поле картофеля преобладают мезофильные, ксерофильные и мезоксерофильные виды. Мезогигрофильные и гигрофильные виды представлены единичными особями.
- 7. Спектр жизненных форм имаго жужелиц на посевах картофеля включает 8 групп, относящихся к классам зоофагов и миксофитофагов. По числу видов преобладают зоофаги, по численности миксофитофаги.
- 8. По численности преобладают жужелицы с мультисезонным и осенним типами размножения. Виды с весенним типом размножения малочисленны.
- 9. В конце лета и осенью, в связи с наложением максимумов сезонной активности массовых видов, их суммарная активность усиливается, что увеличивает их потенциальную эффективность как энтомофагов колорадского жука.

ЛИТЕРАТУРА

- 1. Александрович О.Р. Жужелицы (Coleoptera, Carabidae) запада лесной зоны Русской равнины (фауна, зоогеография, экология, фауногенез). Автореферат диссертации на соиск. уч. степ. доктора биологических наук. Мн.-Прилуки: БелНИИЗР. -1996. -34 с.
- 2. Городков К.Б. Ареалы насекомых Европейской части СССР. Карты 179-221. –Л.: Наука. -1984. -С. 3-21.
- 3. Гусев Г.В.: Энтомофаги колорадского жука.- М.:Агропромиздат, 1991.- 173 с.
- 4. Жеребцов А.К. Комплекс жужелиц картофельного поля и влияние на него химических средств защиты картофеля от вредителей и болезней // Защита раст. и охрана природы в Татарской АССР. Казань, 1989. -Вып. 4. С. 75-78.
- 5. Песенко Ю.А. Принципы и методы количественного анализа в фаунистических исследованиях. –М.: Наука. -278 с.
- 6. Самерсов В.Ф. Интегрированная система защиты зерновых культур от вредителей. Мн.: Ураджай, 1988. 207 с.
- 7. Шарова И.Х. Жизненные формы жужелиц (Coleoptera, Carabidae). -М.: Наука,1981. 360 с.
- 8. Boiteau G. Native predators and the control of potato aphids \\ Canad. Entomologist, 1986; T. 118. N 11. -P. 1177-1183.
- 9. Lindroth C.H. Die fennoskandischen Carabidae. Eine tiergeographisce Studie. 1. Spezieller Teil. -Goteborgs Kungl. Vetenskaps-och Vitterhets-Samhalles Handlingar. -1945.-7 Foljden Ser.B. -Bd.4. -N 1. -709 S.
- 10. Renkonen O. Statistisch-okologische Untersuchungen uber die terrestrische Kaferwelt der finnischen Bruchmoore // Ann.Zool. Soc. Zool.-Bot. Fennicae Vanamo. -1938. -Bd 6. -H. 1. -S. 1-231.
- 11. Thiele H.-U. Carabid beetles in their environments. A study of the habitat selection by adaptations in phisiology and behavior. -Berlin e.a.:Springer. -1977. 369 p.

Таблица 1 Видовой состав и структура доминирования в сообществе жужелиц на посевах картофеля. Слуцкий район

	Доля
Вид	особей,
	%
Harpalus rufipes (Degeer,1774)	46,81
Harpalus griseus (Duftschmid,1812)	6,67
Calathus melanocephalus (Linnaeus,1758)	6,37
Amara fulva (Degeer,1774)	5,22
Calathus fuscipes (Goeze,1777)	4,16
Clivina fossor (Linnaeus, 1758)	4,10
Broscus cephalotes (Linnaeus,1758)	3,12
Bembidion quadrimaculatum (Linnaeus,1761)	2,97
Amara bifrons (Gyllenhal, 1810)	2,42
Harpalus calceatus (Duftschmid,1812)	2,23
Bembidion properans (Stephens, 1828)	2,02
Poecilus versicolor (Sturm,1824)	1,58
Calathus ambiguus (Paykull,1790)	1,56
Loricera pilicornis (Fabricius,1775)	1,52
Calathus erratus (Sahlberg,1827)	1,41
Amara consularis (Duftschmid,1812)	1,06
Amara familiaris (Duftschmid,1812)	1,03
Synuchus vivalis (Illiger,1798)	0,73
Calosoma auropunctatum (Herbst,1784)	0,72
Poecilus lepidus (Leske,1785)	0,58
Pterostichus melanarius (Illiger,1798)	0,55
Poecilus cupreus (Linnaeus,1758)	0,41
Bembidion femoratum Sturm,1825	0,40
Amara apricaria (Paykull,1790)	0,32
Curtonotus aulicus (Panzer,1797)	0,23
Harpalus affinis (Schrank,1781)	0,23
Harpalus luteicornis (Duftschmid,1812)	0,20
Calathus halensis (Schaller,1783)	0,18

Pterostichus niger (Schaller,1783)	0,18
Harpalus tardus (Panzer,1797)	0,17
Amara eurynota (Panzer,1797)	0,09
Amara plebeja (Gyllenhal,1810)	0,09
Anisodactylus signatus (Panzer,1797)	0,06
Amara majuscula Chaudoir,1850	0,06
Amara similata (Gyllenhal,1810)	0,06
Harpalus pumilus Sturm,1818	0,06
Calosoma investigator (Illiger,1798)	0,06
Harpalus froelichii Sturm,1818	0,03
Amara aenea (DeGeer,1774)	0,03
Harpalus smaragdinus (Duftschmid,1812)	0,03
Harpalus autumnalis (Duftschmid,1812)	0,03
Bembidion tetracolum Say,1823	0,03
Notiophilus palustris (Duftschmid,1812)	0,03
Chlaenius nitidulus (Schrank,1781)	0,03
Dyschiriodes globosus Herbst,1784	0,03
Amara municipalis (Duftschmid,1812)	0,03
Notiophilus aquaticus (Linnaeus,1758)	0,03
Anchomenus dorsalis (Pontoppidan,1763)	0,03
Trechus quadristriatus (Schrank,1781)	0,03
Pterostichus oblongopunctatus (Fabricius,1787)	0,03
Отловлено видов	50
Отловлено экземпляров	3450
Динамическая плотность, экз./ловушко-сутки	1,62
Ошибка динамической плотности	±0,08
Индекс разнообразия Шеннона Н'	2,28
Ошибка индекса разнообразия	±0,03
Концентрация доминирования С	0,24

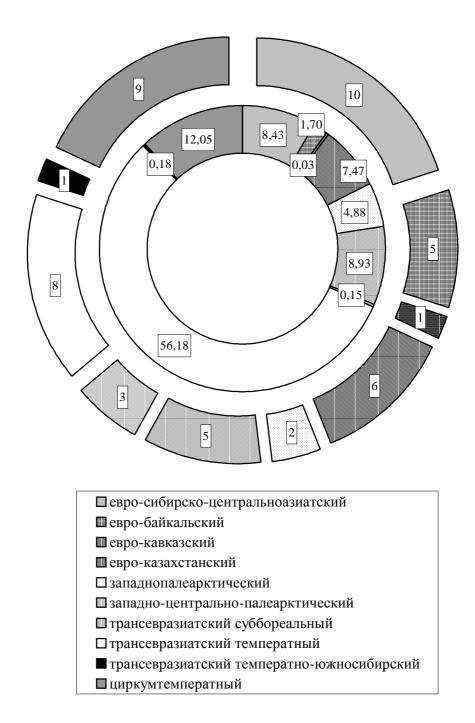
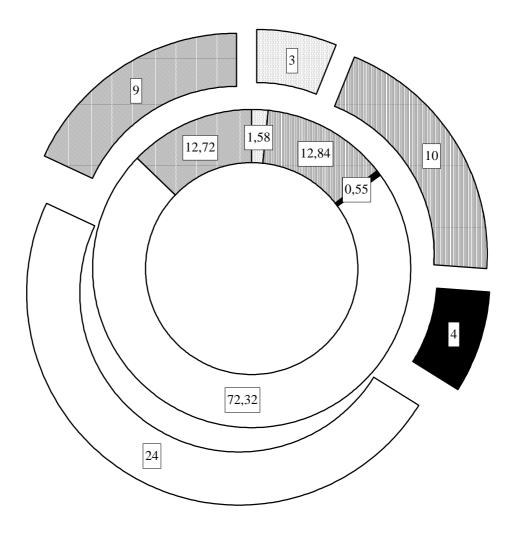
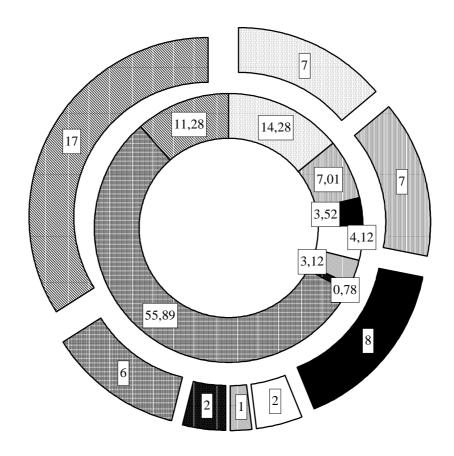




Рис. 1. Зоогеографическая структура населения жужелиц на поле картофеля (наружное кольцо - число видов, внутреннее - доля особей,%). Слуцкий район.

□ гигрофилы ■ ксерофилы ■ мезогигрофилы □ мезофилы □ мезоксерофилы

Рис. 2. Соотношение экологических групп жужелиц по типу гигропреферендума на поле картофеля (наружное кольцо - число видов, внутреннее - доля особей,%). Слуцкий район.

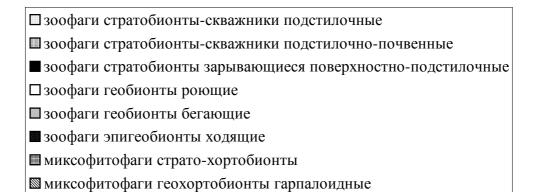


Рис. 3. Соотношение жизненных форм жужелиц на поле картофеля (наружное кольцо - число видов, внутреннее - доля особей,%). Слуцкий район.

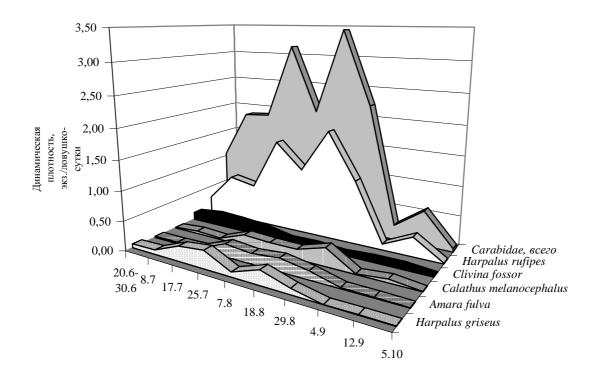


Рис. 4. Сезонная динамика доминантных видов жужелиц на посевах картофеля. Слуцкий район