Which species of the genus Scaurus Fabricius (Coleoptera: Tenebrionidae) occurs in the Caucasus and the border areas of Anatolia?

Maxim Nabozhenko, Yakov Kovalenko & Mark Kalashian

To cite this article: Maxim Nabozhenko, Yakov Kovalenko & Mark Kalashian (2018) Which species of the genus Scaurus Fabricius (Coleoptera: Tenebrionidae) occurs in the Caucasus and the border areas of Anatolia?, Zoology in the Middle East, 64:2, 137-144, DOI: 10.1080/09397140.2018.1442297

To link to this article: https://doi.org/10.1080/09397140.2018.1442297

Published online: 26 Feb 2018.

Submit your article to this journal

Article views: 29

View related articles

View Crossmark data
Which species of the genus *Scaurus* Fabricius (Coleoptera: Tenebrionidae) occurs in the Caucasus and the border areas of Anatolia?

Maxim Nabozhenko\(^a\)b\(^*\), Yakov Kovalenko\(^c\) and Mark Kalashian\(^d\)

\(^a\)Caspian Institute of Biological Resources of the Dagestan Scientific Centre of the Russian Academy of Sciences, Makhachkala, Russia; \(^b\)Dagestan State University, Makhachkala, Russia; \(^c\)Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia; \(^d\)Scientific Centre of Zoology and Hydroecology of the National Academy of Sciences of Armenia, Yerevan, Armenia

(Received 24 October 2017; accepted 11 Febr. 2018; first published online 26 February 2018)

A redescription of the male of *Scaurus araxinus* Richter, 1945 is given and the female is described for the first time. The species occurs in Azerbaijan (Nakhichevan Republic), Armenia (Tigranashen and Yeghegnadzor) and Eastern Turkey (first record in Iğdır province). It had been regarded as conspecific with *S. syriacus* Reitter, 1914 and *S. puncticollis* Solier, 1838 but clearly differs from both these species and is close to *S. rugicollis* Reitter, 1914 from the Mediterranean region. The female genital tubes of *S. araxinus* are figured, the first such illustration for the tribe Scaurini. The genus *Scaurus* has a small secondary bursa copulatrix, separated glandular, moderately short, spermatheca and a relatively short accessory gland, similar to those found in some genera of the tribe Helopini.

Keywords: Transcaucasia; Turkey; morphology; distribution

Introduction

The genus *Scaurus* Fabricius, 1775 (Tenebrioninae: Scaurini) comprises 45 species and 5 subspecies distributed in Northern Africa (including Sudan), the European Western Mediterranean, the Middle East, and Transcaucasia (Löbl et al. 2008; Ferrer, Castilla, Hawez, Abdulla, & Al-Hemaidi, 2014; Abdurakhmanov, Nabozhenko, Abdurakhmanov, Ivanushenko, & Daudova, 2016). It belongs to the small tribe Scaurini (subfamily Tenebrioninae) with two Palaearctic (*Scaurus* and *Cephalostenus* Solier, 1838) and two Afrotropical (*Carchares* Pascoe, 1887 and *Herpiscius* Solier, 1838) genera (Schulze, 1983). The New World genera, previously included in the tribe Scaurini, were transferred to the tribes Cerenopini and Eulabini (Berry, 1973), which is also supported by larval characters (Schulze, 1983). A first full revision of the genus *Scaurus* was made by Reitter (1914). Labrique, who contributed greatly to the knowledge of the Scaurini, again revised the genus (Labrique, 1995a, 1995b, 1999, 2002, 2007), and Ferrer et al. (2004) provided an almost complete bibliography on this genus and discussed the Middle East species. In light of new material from Azerbaijan, Armenia, and Turkey, we reassess the taxonomic position of the little known and disputable *Scaurus araxinus* Richter, 1945.

\(^*\)Corresponding author. Email: nalassus@mail.ru

© 2018 Taylor & Francis

Published online 26 Feb 2018
The *Scaurus puncticollis* species group

The *Scaurus puncticollis* Solier, 1838 species group was first mentioned by Koch (1935), who interpreted *S. rugicollis* Reitter, 1914, *S. macricollis* Allard, 1882, *S. syriacus* Reitter, 1914 as subspecies of *S. puncticollis*. Peyerimhoff (1946) described an additional subspecies, *S. puncticollis getula* Peyerimhoff, 1946, but later he proposed to consider all these taxa as “aberrations” of *S. puncticollis* (Peyerimhoff, 1948). Lillig (1995) described a further species in the *puncticollis* species-group, *S. pevelingi* Lillig, 1995. Labrique (1999) transferred this taxon as a subspecies of *S. getula*: *S. getula pevelingi* and noted that *S. puncticollis sensu lato* and *S. getula pevelingi* are closely related. This opinion, published in Labrique’s (1999) doctoral thesis, has not been taken into account by subsequent authors. The combination *S. puncticollis getula* was used in Löbl et al. (2008).

The *S. puncticollis* species group was partly revised for the Middle East by Ferrer et al. (2014), who studied the type material of several taxa and analysed additional taxonomic characters such as ovipositor and female ventral spicula. As a result almost all subspecies of *Scaurus puncticollis* were elevated to species level: *S. macricollis*, *S. rugicollis*, *S. syriacus* and *S. dlabolai* Kaszab, 1959. They also described two new species, *S. nielseni* Ferrer, Castilla, Hawez, Abdulla et Al-Hemaidi, 2014 from Turkey and *S. qataricus* Ferrer, 2014 from Qatar.

Within these seven species only one taxon was not discussed: *Scaurus araxinus* Richter, 1945. This species was described from Julfa (Nakhichevan, Azerbaijan) and formally (without any differential characters) compared with *S. macricollis* (Richter, 1945). Later this species was listed only by Iablokoff-Khnzorian (1961), Löbl et al. (2008) and Abdurakhmanov & Nabozhenko (2011). Ferrer et al. (2014) interpreted this species as *S. syriacus* Reitter, 1914 without any arguments and formal synonymisation. Mas-Peinado, Ruiz, Garcia-Paris, Castilla, Valdeón, and Saifelnsar (2013) listed *S. puncticollis* for Armenia referring to Richter (1945).

We studied the holotype of *S. araxinus* and additional material from Southern Armenia and Eastern Anatolia and discovered that it is clearly distinct from all other Middle East species in several male and female characters, and is likely to be more closely related to the Mediterranean species *S. rugicollis* Reitter, 1914. This contribution continues our study of Caucasian Tenebrionidae after the publication of the key and catalogue of this territory and Anatolia (Abdurakhmanov & Nabozhenko 2011; Abdurakhmanov et al., 2016).

Abbreviations

This study is based on material deposited in the following collections:
IZAY Institute of Zoology, Scientific Centre of Zoology and Hydroecology of the National Academy of Sciences of Armenia, Yerevan
MKCY Collection of Mark Kalashian (Yerevan, Armenia)
ZIN Zoological Institute of Russian Academy of Sciences, St. Petersburg

Scaurus araxinus A. Richter, 1945 (Figures 1–3)

Description of female. Body large (21 mm long, 8 mm wide), dull. Head: Widest at temple level, where head is 1.05 times wider than at eye level. Head width 1.55 times width of interocular space. Temples strongly convex and distinctly separated from other surface of head. Eyes weakly convex, strongly transverse and oblique dorsally. Anterior
margin of head weakly bisinuate. Anterior third of head with smooth sparse punctuation, punctures without granules. Frons with not deep wide dense elongate foveae at middle and dense finer foveae basally; all foveae with granules. Vertex distinctly separated from gular area, with coarse and dense round granulated foveae. Gular area with dense fine transverse punctures, gula without punctuation laterally and with very fine smooth punctures at middle. Mentum strongly transverse, trapezoidal, weakly depressed on sides. – Pronotum: Transverse (1.2 times as wide as long), widest at middle. Lateral margins of pronotum strongly rounded from anterior part to basal third and straight in basal third. Anterior margin weakly bisinuate, with projected middle. Base widely emarginate at middle. Anterior angles widely rounded almost not expressed. Posterior angles obtuse, rounded apically. Anterior margin and base distinctly beaded, lateral margins not beaded. Disc of pronotum with two weak oblique impressions at middle and smooth depressed area along basal bead. Punctuation of pronotum irregular: with small and sparse oval punctures in anterior quarter (puncture diameter subequal to distance between them); middle with small dense elongate foveae (fovea diameter 3–4 times as long as distance between them); sides and basal quarter with very dense and coarse large connected fovea. Each fovea with radial microsculpture and one small granule at middle. Prosternum with granulation before procoxae. Prothoracic hypomera with coarse and large dense granules. Prosternal process widened between procoxae and at apex, beaded and with longitudinal depression at middle. – Elytra: Oval (1.3 times as long as wide) with small humeral angles in base, 1.27 times as wide and 1.9 times as long as pronotum, 2.2 times as wide as head. Elytra with sutural rib in apical third. Each elytron also with full marginal and lateral rib and not full medial rib reaching elytral

Figure 2. *Scaurus araxinus*, details of the structure: A, punctuation of pronotum, anterior third; B, the same, lateral sides; C, the same, basal half; D, sculpture of elytra; E, lateral side of elytra near the apex. Arrow shows additional short rib between marginal and lateral ribs of elytra.
basal third; apical part of each elytron with small and short rib between marginal and lateral ribs. Lateral ribs not reaching apex of elytra. Marginal and lateral ribs weakly serrate apically. Strial punctures moderately deep, smooth. Interstriae with sparse microgranules. — Mesoventrite: With very dense and fine granulation in anterior half and large foveae in intercoxal area. Mesepisterna with dense and fine punctuation in apical half and large and dense foveae in basal half. Metaventrite strongly transverse (4.1 times as wide as long), with small impression and coarse punctuation at middle and with coarse longitudinal wrinkles on sides; intercoxal process of metaventrite broadly beaded, narrowly than intercoxal process of mesoventrite. Metepisterna with coarse foveae. Metepimera small, convex. Abdominal ventrites 1–4 widely beaded, with coarse and dense punctuation (puncture diameter 2–4 times longer that interpuncture distance); abdominal ventrite 5 not beaded, with finer and sparse punctuation (puncture diameter 2 times as short as interpuncture distance). — Legs: Profemora with strong acute tooth on
dorsal inner side and weakly elevated (at apex) ventral inner side. Meso- and metafemo-
ra curved. Pro- and mesotibiae weakly bent, metatibiae straight. – Genitalia: Ovipositor
fossorial, with four lobes of coxite, wide sclerotized and flattened apical lobes. Each
apical lobe shortly sinuated near apex, without styli but with four long setae in each
“stylus” foveae. Paraproct longitudinal, oblique, with wide baculi ventrally. Proctiger
without baculi, but with more sclerotized lateral margins basally. Spermatheca un-
branched, granular, with short basal duct (i.e. duct between vagina and connection of
accessory gland and spermatheca). Vagina with small secondary bursa copulatrix. Gland
shorter than spermatheca.

Description of male. By contrast to Richter’s (1945) description, the holotype does not
have marginally beaded pronotum (not completely beaded), elytra widest at the middle
(not after the middle).

Distribution: Southern Armenia, Azerbaijan (Nakhichevan), Turkey (İğdir). First record
for Turkey.

Discussion

The description of the male of *S. araxinus* by Richter (1945) does not match in all de-
tails with the holotype. The female is described here for the first time.

Ferrer et al. (2014) separated *Scaurus nielseni* and *S. rugicollis* from the other Mid-
dle Eastern members of the genus based on the structure of the pronotal punctation.
Both species have open basally U-shaped pronotal foveae, each with a single central
micro-granule. *Scaurus araxinus* also belongs to this species group and differs from
both species in the structure of pronotal punctation (fovaea close, not U-shaped, round
on sides, not strigose in *S. araxinus*) and sinuated margins of apical lobes of ovipositor.
In addition, *S. araxinus* differs from all Middle Eastern species in the distally directed
rectangular tooth on the lower inner side of the profemora.

The structure of female genitalia of *Scaurus* was partly discussed by Ferrer et al.
(2014), who compared the ovipositors (lobes of coxite) of five species and figured the
ventral spicula for two species. The *Scaurus* ovipositor is similar to those found in
members of the genus *Blaps* Fabricius, 1775, which also have fossorial often flattened
apical lobes with reduced styli (Medvedev, 2001; Chigray & Nabozhenko, 2016; Chig-
ray, Abdurakhmanov, Nabozhenko, & Shapovalov, 2016). Species of *Scaurus*, in con-
trast to *Blaps*, have long setae in the stylus area (all species of *Blaps* have only one very
short seta near the base of apical lobe).

The genital tubes of Scaurini have not been studied in detail to date. Tschinkel and
Doyen (1980) wrote that “the spermathecae in several American Scaurini are extremely
thin tubules” (*Apsena* LeConte, 1862 and *Argoporis* Horn, 1870). They also figured
female genital tubes for one species of the genus *Apsena*. However these authors did not
take into account the work of Berry (1973), where *Apsena* was transferred to the tribe
Eulabini, and *Argoporis* to the tribe Cerenopini. The Scaurini (at least *S. araxinus*) has
unusual genital tubes with a small secondary bursa copulatrix, separated spermatheca
(with the basal duct) and a short accessory gland. A secondary bursa copulatrix is also
known to occur within genera of the diaperine lineage of Tenebrionidae, but these gene-
ra have the basal spermatheca with an apically connected accessory gland. Most Te-
nebrioninae and some Stenochiinae have a single bursa-derived spermatheca and a sepa-
rate accessory gland (Tschinkel & Doyen, 1980, fig. 17). The secondary bursa copula-
trix, along with the separate spermatheca and accessory gland are also present in the
genus *Xanthohelops* Nabozhenko, 2006 (subfamily Tenebrioninae, tribe Helopini)
(Nabozhenko, 2006); however, that genus does not have the basal spermathecal duct (i.e., both the spermatheca and the accessory gland flow into the vagina separately). In both cases, the bursa copulatrix is probably the compensatory mechanism with short and extremely thin spermatheca tubules and should be used with caution in considerations of the higher taxonomy of Tenebrionidae.

Acknowledgements
We are grateful to Kirill V. Makarov (Moscow State Pedagogical University, Russia), Artyom Saribekyan (Yerevan, Armenia) for their help in taking some of the photographs and two anonymous reviewers for valuable comments and corrections. The authors are sincerely grateful to Aaron D. Smith (Northern Arizona University, USA) for suggested adjustments to the English grammar.

Funding
This work was supported by the Russian Science Foundation under Grant No. 16-14-10031.

Disclosure Statement
No potential conflict of interest was reported by the authors.

References

