A New Genus and Species of Cnodalonini (Coleoptera: Tenebrionidae) from Borneo

Article in Annales Zoologici - December 2016
DOI: 10.3161/00034541ANZ2016.66.4.004

CITATION
1

READS
263

2 authors:

Lubos Purchart
Mendel University in Brno
158 PUBLICATIONS 462 CITATIONS

Roland Grimm
40 PUBLICATIONS 54 CITATIONS

Some of the authors of this publication are also working on these related projects:

Systematics, taxonomy, phylogeny and biogeography of Adelostomini (Coleoptera: Tenebrionidae) View project

Darkling beetles (Coleoptera: Tenebrionidae) of the Socotra Archipelago. View project

All content following this page was uploaded by Lubos Purchart on 31 January 2017.
The user has requested enhancement of the downloaded file.
A NEW GENUS AND SPECIES OF CNODALONINI (COLEOPTERA: TENEBRIONIDAE) FROM BORNEO

LUBOŠ PURCHART1,* and ROLAND GRIMM2

1Mendel University, Department of Forest Ecology, Zemědělská 3, 613 00 Brno, Czech Republic; e-mail: lubos.purchart@post.cz
2Unterer Sägerweg 74, 75305 Neuenbürg, Germany
*Corresponding author

Abstract.— Borneosphena fouquei gen. nov. et. sp. nov. is described from the island of Borneo. The newly discovered genus mostly resembles Cryptobrachys Kaszab, 1941, Cryptostenophanes Kaszab, 1941, Falsobates Kaszab, 1941, Malaysphena Bečvář & Purchart, 2008, and Xantusiella Kaszab, 1941. A differential diagnosis is presented.

Key words.— Taxonomy, darkling beetles, Borneosphena fouquei, East Malaysia, Sabah.

INTRODUCTION

During his visit in the frame of SYNHESYS program (http://www.synthesys.info/access/) in Natural History Museum in London (BMNH), the junior author discovered four specimens of an unknown darkling beetle species which were preliminary labelled by Dr. Zoltán Kaszab as “Laosocryptobates sp. n.”. Indeed these specimens at first sight resembled in some extent members of Laosocryptobates Pic, 1928, a genus recently synonymised with Hexarhopalus Fairmaire, 1891 (see Bečvář & Purchart 2008). Laosocryptobates tuberculatus Pic, 1928 (type species of Laosocryptobates) was transferred to Hexarhopalus, while the remaining five species (L. clavipes Kaszab, 1960, L. parva Kaszab, 1960, L. punctipes Kaszab, 1960, L. rotundipennis Kaszab, 1960, and L. rugosipes Kaszab, 1960) were assigned to a newly described Malaysphena Bečvář & Purchart, 2008. A thorough examination of the specimens recently found in the BMNH revealed that they do not fit taxonomic concepts of Laosocryptobates (= Hexarhopalus) nor Malaysphena but represent a new genus which can be placed close to the above mentioned genera within the family-group formerly known as Misolampini Lacordaire, 1859 (see Kaszab 1941). However, according to the more recent classification concepts Misolampini is interpreted as a synonym of Cnodalonini Gistel, 1856 (Doyen 1989, Bouchard et al. 2005). Since Kaszab’s (1941) work the Misolampini generic concepts have not systematically been studied and badly need revision.

The aim of this paper was to describe the newly discovered species and discuss its systematic position among the family Tenebrionidae.

MATERIAL AND METHODS

Dissection and preparation of female’s internal structures followed Iwan & Kaminski (2016). Photographs were taken using a KEYENCE microscope with VH-Z20R and VH-Z100R lenses at the Faculty of Forestry and Wood Technology (Mendel University in
RESULTS AND DISCUSSION

Borneosphena gen. nov.
(Figs. 1–14)

Type species. *Borneosphena fouquei* sp. nov. (Fig. 1), by monotypy and present designation.

Etymology. The genus name “Borneosphena” refers to the island of Borneo, where the genus occurs, with the suffix “-sphen” (Greek, “wedge”) as used in the related genus *Malaysphena*.

Description. Body ovate, strongly convex, black, mat. Body length: 9.6–12.2 mm; width: 4.8–5.5 mm. Flightless, wingless.

Head bent down, narrower than pronotum widest at level of eyes; without visible membrane between labrum and clypeus; clypeus transverse, with emarginate apical margin, narrowing anteriorly, frontoclypeal suture well developed, broadly U-shaped; genae strongly developed; eyes vertical, narrowly recondite, ocular groove shallow. Antennae as in Figs. 1 and 2, long, with eleven antennomeres, last five antennomeres pubescent (Fig. 7), with stellate sensoriae (Fig. 8), forming a loose club. Mentum trapezoidal; terminal maxillary palpomere secundiform.

Pronotum transverse, convex, faintly rounded apically, nearly straight narrowed basally, base broadly bordered. Scutellum invisible.

Elytra obovate, with coarse, partly obsolete punctural rows; intervals convex and bumpy with large and highly elevated granules; declivity steep; elytra fused with each other at suture, with no trace of hindwings.

Prosternum narrow; prosternal apophysis steeply inclined anteriorly, almost vertically declivous behind coxae, terminating in a tubercle, with two furrows, apex at top (between coxae) with three abraded tubercles. Mesoventrite narrow (short), narrower than mesocoxae, anterior part with distinct shiny carina; basally terminating in tip. Metaventrite very narrow, much narrower than metacoxae; basally with two dorsally abraded granules.

Abdomen moderately convex; abdominal ventrite I approximately as long as the two following ventrites combined; ventrites II–IV approximately of the same size; ventrite V is the longest, distinctly punctate, laterally and apically with obliterated and shiny margins; membranes visible between last three ventrites. Defensive reservoirs with numerous transverse rings (Fig. 9).

Legs long, slender; femora apically very slightly elavate, profemora apically weakly arcuate, meso- and metafemora straight; protibiae slightly incurved before apex, mesotibiae shallowly arcuate, metatibiae almost straight, thickened in apical quarter, with inner margin weakly excavate before apex; plantar surfaces of basal tarsomeres pubescent.

Aedeagus simple (Figs. 5, 6) inverted. Ovipositor strongly modified, with coxite lobe 1 elongate, paraproct baculi transverse articulating at their extremities with ends of additional baculi which articulate in turn with proctigeral baculi (Figs. 10, 11, 12).

Remarks. The systematic placement of the new genus in the tribe Cnodalonini is supported by the presence of stellate sensoriae on antennomeres VII–XI and is in accordance with results of Tschinkel & Doyen (1980) and Matthews & Bouchar (2008).

Differential diagnosis. Using Kaszab’s (1941) key for Misolampini the new genus does not completely fit any of the characters used to distinguish genera treated. However, in general appearance, *Borneosphena* gen. nov. mostly resembles the genera *Falsobates* Kaszab, 1941, *Malaysphena* Becvár & Purchart, 2008, *Xantusiella* Kaszab, 1941, *Cryptostenophanes* Kaszab, 1941, and *Cryptobrachys* Kaszab, 1941.
large and highly elevated granules; invisible scutellum; convex pronotum with coarsely punctured dorsal surface; well developed, broadly U-shaped frontoclypeal suture; transverse clypeus, with emarginate apical margin; similar shape of prosternal apophysis and mesoventrite with distinct shiny carina in its anterior part. The two genera differ as follows: large granules on elytral interstriae shiny in Falsobates, matt in Borneosphena gen. nov.; last 4 pubescent antennomeres forming a loose club with 3 penultimate antennomeres distinctly transverse and ultimate antennomere nearly squared in Falsobates while in Borneosphena gen. nov. last 5 pubescent antennomeres forming loose club with 3 penultimate antennomeres longer than wide and ultimate antennomere distinctly longer than wide; ocular groove deep in Falsobates while the ocular groove is shallow in Borneosphena gen. nov.; outer margin of all tibiae with distinct groove, with pro- and metatibiae strongly curved in both males and females of Falsobates while the groove is absent in Borneosphena gen. nov. with pro- and metatibiae straight in both sexes; posterior part of metaventrite with two large granules in Borneosphena gen. nov. which are absent in Falsobates.

The genus Cryptobrachys differs from Borneosphena gen. nov. by 3 penultimate antennomeres transverse, anterior margin of clypeus straight, apical part of mesoventrite without carina, pronotum rather globular, scutellum visible, prosternal apophysis not pointed (without spike), elytra without granules.

The genus Cryptostenophanes differs from Borneosphena gen. nov. by visible scutellum, straight anterior margin of clypeus, ocular groove deep, pronotum nearly cylindrical, prosternal apophysis not pointed (without spike), elytra without granules, outer margin of tibiae with shallow but distinct groove, clypeal suture weakly developed.

The genus Malaysaphena can be distinguished as follows: femora claviform, pronotum with shiny granules, anterior margin of clypeus straight, clypeal suture W-shaped, prosternal apophysis in lateral view slightly depressed behind coxae and not pointed, scutellum present.

The genus Xantusiella differs from Borneosphena gen. nov. by shiny granules on elytra, genae strongly raised above level of epistome, pronotum with granules, last 4 apical antennomeres strongly transverse, scutellum present, anterior margin of clypeus straight, clypeal suture not developed.

Borneosphena fouquei sp. nov.

(Figs. 1–14)

Type locality. Malaysia, Borneo, Sabah, Mt. Kinabalu.

Figures 1–6. *Borneosphena fouquei* gen. et sp. nov., holotype (1–2); scale bar = 5 mm: (1) habitus, dorsal view; (2) habitus, lateral view; male, paratype: (3–6); (3) head, ventral view; (4) pro- and mesosternum, metaventrite and abdominal sternites; (5) aedeagus, dorsal view; (6) aedeagus, lateral view.
Figures 7–14. *Borneosphena fouquei* gen. et sp. nov., holotype (7–8): (7) left antenna, antennomeres VII–XI, dorsal view; (8) left antenna, antennomere IX, dorsal view (white arrows showing stellate sensoriae); female, paratype: (9–14); (9) defensive reservoirs; (10) ovipositor (before dissection), dorsal view; (11) ovipositor (before dissection), ventral view; (12) ovipositor (dissected), ventral view; (13) spiculum ventrale, ventral view; (14) tergite VIII. *ab* – addititional baculus; *cx1-cx4* – coxite lobe 1–4; *pb* – proctigeral baculus; *pp* – paraproct baculus.
Etymology. Named in memory and honour of the late (1980–2016) colleague, friend and a man of exceptional qualities René Fouqué (Liberec, Czech Republic), specialist in Tenebrionidae.

Description. Ovate, strongly convex, black, mat, body length 9.6–12.2 mm (holotype: 10.8 mm), body width 4.8–5.5 mm (holotype: 5.5 mm) (Figs. 1, 2).

Head widest across middle of eyes and convex temples; somewhat narrower across raised genae, the latter broadly rounded towards clypeo-genal meeting; outline faintly notched between clypeus and frons; anterior border of clypeus shallowly emarginate in the middle. Frons between eyes broad, flat, sloping towards clypeus, clypeus lower than genae and frons; clypeal suture distinct, broadly U-shaped. Dorsal side of frons and basal part of clypeus coarsely punctured, finely punctured behind anterior margin of clypeus. Eyes narrow reniform; supraorbital furrow distinct. Antennae long, bent backwards reaching base of pronotum, antennomeres coarsely punctured; last 5 antennomeres pubescent (Fig. 7), with stellate sensori-ae (Fig. 8), forming a loose club; length/width ratio of antennomeres 1 to 11 as 2:1/1:6:2.5/2:1/2:1/4.5:1/4.5:3/4:3.5/4:3.5/4:5.3/5:6.5:4. Mentum trapezoidal (Fig. 3), broadly rounded with margins converging towards base, apical margin straight; along midline with elevated bulge, impressed in basal half.

Pronotum strongly convex, widest before middle; faintly rounded apically, nearly straight narrowed basally. Apical margin shallowly bisinuate, basal margin rounded and broadly bordered; apical margin and lateral margins distinctly but finely bordered; in dorsal view lateral borders only seen in basal half and near anterior angles. Anterior angles obtuse, broadly rounded; prosternal angles obtuse. Dorsal surface coarsely punctured; in basal half behind middle, beside longitudinal midline with weak, oblong, basally flattened bump; apico-lateral to bump with round impression. Prosternal apophysis steeply inclined anteriorly, almost vertically declivous behind coxae, terminating in a tubercle, with two furrows; apex at top (between coxae) with three abraised tubercles (Fig. 4).

Elytra obovate, with coarse, partly obsolete rows of punctures; intervals convex and bumpy with, especially basally and laterally, highly elevated granules. Metaventrite basally with two dorsally abraded granules (Fig. 4). Abdominal ventrite 1 shallowly impressed in apical part (Fig. 4). Tergite VIII as in Fig. 14. Spiculum ventrale as in Fig. 13. Defensive reservoirs with numerous transverse rings (Fig. 9).

Legs long, femora and tibiae strongly punctured; femora apically slightly clavate, profemora apically weakly arcuate, meso- and metafemora straight. Pro-tibiae slightly incurved before apex, mesotibiae shallowly arcuate, metatibiae straight, thickened in apical quarter and weakly excavate before apex. Plantar surfaces of basal tarsomeres pubescent.

Aedeagus as in Figs. 5, 6. Ovipositor strongly modified, with coxite lobe 1 elongate, paraproct baculi transverse articulating at their extremities with ends of additional baculi which articulate in turn with proctigeral baculi (Figs. 10, 11, 12).

Sexual dimorphism. In females the metatibiae are not thickened apically. Other differences not observed.

Distribution. Borneo, Sabah, Crocker Mts.

Habitat and collection circumstances. Specimens of the new species were found in montane primary rain forest only and collected from logs at night or under logs in the day time.

ACKNOWLEDGEMENTS

The authors thank Maxwell V.L. Barclay (BMNH), Wolfgang Schawaller (SMNS), Michael Balke (ZSM), and Ottó Merkl (Natural History Museum Budapest, Hungary) for allowing us to study the material in their custody. Warren Steiner (USNM), Patrice Bouchard (Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, Canada) and two anonymous reviewers reviewed and improved the manuscript. This research received support from the Synthesys Project GB-TAF-2039 (http://www.synthesys.info/) financed by the European Community Research Infrastructure Action under the FP7 ‘Structuring the European Research Area Programme’.

REFERENCES

Bremer, H. J. 2010. Revision of the genus *Amarygmus*

Received: June 28, 2016
Accepted: December 3, 2016