Generation of the reactive oxygen species during immune reactions of arthropods

V.V. Glupov, I.A. Slepneva and I.M. Dubovskiy

Proceedings of the Zoological Institute RAS, 2009, 313(3): 297–307   ·   https://doi.org/10.31610/trudyzin/2009.313.3.297

Full text  

Abstract

Topics considered in this review include generation of reactive oxygen species (ROS), their features and sources in arthropods and the role of ROS in development of immune response against parasites. The cellular and humoral immune reactions of hosts are enhanced under parasite penetration. The main cellular defense refers to hemocytemediated immune responses like phagocytosis of small particles as well as isolation and destroying large particles by encapsulation. These processes are accompanied by melanin formation as results of phenoloxidase activity and melanogenesis. In this review the melanogenesis is examined as one of the reasons of increased generation of ROS which have a high reaction activity and ability to destroy parasites.

Key words

insect, parasite, hemolymph, melanogenesis, encapsulation, reactive oxygen species, phenoloxidase

Submitted February 12, 2009  ·  Accepted June 1, 2009  ·  Published September 25, 2009

References

Владимиров Ю.А., Азизова О.А. и Деев А.И. 1991. Свободные радикалы в живых системах. Итоги науки и техники. Серия Биофизика, 29: 1–249.

Бриттон Г.Б. 1986. Биохимия природных пигментов. Мир, Москва, 422 с.

Глупов В.В., Комаров Д.А., Слепнева И.А., Дубовский И.М., Гризанова Е.В. и Храмцов В.В. 2006. Генерация супероксидного радикала и перекиси водорода в гемолимфе насекомых в процессе иммунного ответа. Доклады академии наук, 411: 420–423.

Зенков Н.К., Ланкин В.З. и Меньщикова Е.Б. 2001. Окислительный стресс: биохимический и патофизиологический аспекты. МАИК, Москва, 343 c.

Крюкова Н.А., Дубовский И.М., Гризанова Е.В., Глупов В.В. и Наумкина Е.А. 2007. Формирование клеточного иммунного ответа Galleria mellonella (L.) (Lepidoptera: Piralidae) при паразитировании Habrobracon hebetor (Say) (Hymenoptera: Braconidae). Евразиатский энтомологический журнал, 6: 361–364.

Лозинская Я.Л., Слепнева И.А., Храмцов В.В. и Глупов В.В. 2004. Изменение антиоксидантного статуса и системы генерации свободных радикалов в гемолимфе личинок Galleria mellonella при микроспоридиозе. Журнал эволюционной биохимии и физиологии, 40: 99–103.

Arakawa T. 1994. Superoxide generation in vitro in lepidopteran larval haemolymph. Journal of Insect Physiology, 40: 165–171. https://doi.org/10.1016/0022-1910(94)90088-4

Arakawa T. 1995a. Possible involvement of an enzymatic system for superoxide generation in lepidopteran larvae haemolymph. Archives of Insect Biochemistry and Physiology, 29: 281–291. https://doi.org/10.1002/arch.940290306

Arakawa T. 1995b. Superoxide generative reaction in insect haemolymph and its mimic model system with surfactants in vitro. Insect Biochemistry and Molecular Biology, 25: 247–253. https://doi.org/10.1016/0965-1748(94)00062-M

Ashida M. and Brey P.T. 1998. Recent advances in research on the insect prophenoloxidase cascade. In: P.T. Brey and D. Hultmark (Eds.). Molecular mechanisms of immune responses in insects. Chapman and Hall, London: 135-172.

Ashida M. and Yamazaki H.I. 1990. Biochemistry of the phenoloxidase system in insects: with special reference to its activation. In: E. Ohnishi and H. Ishizaki (Eds.). Molting and Metamorphosis. Japan Sci. Soc. Press, Tokyo; Springer-Verlag, Berlin: 239–270.

Bienert G.P., Schjoerring J.K. and Jahn T.P. 2006. Membrane transport of hydrogen peroxide. Biochimica et Biophysica Acta, 1758: 994–1003. https://doi.org/10.1016/j.bbamem.2006.02.015

Bogdan C., Röllinghoff M. and Diefenbach A. 2000. The role of nitric oxide in innate immunity. Immunological Reviews, 173: 17–26. https://doi.org/10.1034/j.1600-065X.2000.917307.x

Boman H.G. 2003. Antibacterial peptides: basic facts and emerging concepts. Journal of International Medical Recearch, 254: 197–215. https://doi.org/10.1046/j.1365-2796.2003.01228.x

Boman H.G., Faye I., Gudmundsson G.H., Lee J.Y. and Lindholm D.A. 1991. Cell-free immunity in Cecropia. A model system for antibacterial proteins. European Journal of Biochemistry, 201: 23–31. https://doi.org/10.1111/j.1432-1033.1991.tb16252.x

Bursel E. 1970. An introduction to insect physiology. Academic Press, London, New York, 276 p.

Carton Y. and Nappi A.J. 1997. Drosophila cellular immunity against parasitoids. Parasitology Today, 13: 218–227. https://doi.org/10.1016/S0169-4758(97)01058-2

Carton Y., Poirié M. and Nappi A.J. 2008. Insect immune resistance to parasitoids. Insect Science, 15: 67–87. https://doi.org/10.1111/j.1744-7917.2008.00188.x

Chen C., Durrant H.J., Newton R.P. and Ratcliffe N.A. 1995. A study of novel lectins and their involvement in the activation of the prophenoloxidase system in Blaberus discoidalis. Biochemical Journal, 310: 23–31. https://doi.org/10.1042/bj3100023

Cross A.R. and Jones O.T.G. 1991. Enzymic mechanisms of superoxide production. Biochimica et Biophysica Acta, 1057: 281–298. https://doi.org/10.1016/S0005-2728(05)80140-9

DiGuiseppi J. 1982. Oxygen toxicity in Streptococcus sanguis. The relative importance of superoxide and hydroxyl radicals. Journal of Biological Chemistry, 257: 4046–4051. https://doi.org/10.1016/S0021-9258(18)34683-0

Dimopoulos G. 2003. Insect immunity and its implication in mosquito-malaria interactions. Cellular Microbiology, 5: 3–4. https://doi.org/10.1046/j.1462-5822.2003.00252.x

Drapier J.C. and Hibbs J.B. 1988. Differentation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron sulpur enzymes in the macrophage effector. Journal of Immunology, 140: 2829–2838.

Eberhard W., Beck K.-F. and Pfeilschifter J. 2002. Cytokine-induced expression of tPA is differentially modulated by NO and ROS in rat mesangial cells. Kidney International, 61: 20–30. https://doi.org/10.1046/j.1523-1755.2002.00087.x

Engstrom Y. 1999. Induction and regulation of antimicrobial peptides in Drosophila. Developmental and Comparative Immunology, 23: 345–358. https://doi.org/10.1016/S0145-305X(99)00016-6

Fridovich I. 1979. Superoxide radicals, superoxide dismutases and the aerobic lifestyle. Photochemistry and Photobiology, 28: 733–741. https://doi.org/10.1111/j.1751-1097.1978.tb07009.x

Gan H., Wang Y., Jiang H., Mita K. and Kanost M.R. 2001. A bacteria-induced, intracellular serpin in granular hemocytes of Manduca sexta. Insect Biochemistry and Molecular Biology, 31: 887–898. https://doi.org/10.1016/S0965-1748(01)00034-0

Glupov V.V., Slepneva I.A., Serebrov V.V., Khvoschevskay M.F., Martem’yanov V.V., Dubovskiy I.M. and Khramtsov V.V. 2003. Influence of the fungal infection on the production of reactive metabolites and the antioxidant state of haemolymph of Galleria mellonella larvae. Russian Entomological Journal, 12: 103–108.

Gus’kova R.A., Ivanov I.I. and Kol’tover V.K. 1984. Permeability of bilayer lipid membranes for superoxide radicals. Biochimica et Biophysica Acta, 778: 579–585. https://doi.org/10.1016/0005-2736(84)90409-7

Halliwell B. and Gutteridge J.M.C. 1999. Free radicals in biology and medicine. Oxford University Press, Oxford, 936 p.

Hetru C., Troxler L. and Hoffmann J.A. 2003. Drosophila melanogaster antimicrobial defense. Journal of Infectious Diseases, 187(S2): 27–34. https://doi.org/10.1086/374758

Hoffman M.E., Mello-Filho A.C. and Meneghini R. 1984. Correlation between cytotoxic effect of hydrogen peroxide and the yield of DNA strand breaks in cells of different species. Biochimica et Biophysica Acta, 781: 234–238. https://doi.org/10.1016/0167-4781(84)90088-5

Hultmark D. 1996. Insect lysozymes. In: P. Jolleás (Ed.). Lysozymes: model enzymes in biochemistry and biology. Birkhauèser Verlag, Basel: 87–104. https://doi.org/10.1007/978-3-0348-9225-4_6

Kalyanaraman B. and Sealy R.C. 1982. Electron spin resonance – spin stabilization in enzymatic systems: detection of semiquinones produced during peroxidatic oxidation of catechols and catecholamines. Biochemica land Biophysical Research Communications, 106: 1119–1125. https://doi.org/10.1016/0006-291X(82)91228-1

Kalyanaraman B., Felix C.C. and Sealy R.C. 1984. Peroxidatic oxidation of catecholamines. A kinetic electron spin resonance investigation using the spin stabilization approach. Journal of Biological Chemistry, 259: 7584–7589. https://doi.org/10.1016/S0021-9258(17)42830-4

Klebanoff S.J. 1974. Role of the superoxide anion in the myeloperoxidase-mediated antimicrobial system. Journal of Biological Chemistry, 249: 3724–3728. https://doi.org/10.1016/S0021-9258(19)42533-7

Komarov D.A., Slepneva I.A., Glupov V.V. and Khramtsov V.V. 2005. Detection of free radicals formation in haemolymph of insects by EPR spectroscopy. Applied Magnetic Resonance, 28: 411–419. https://doi.org/10.1007/BF03166772

Komarov D.A., Slepneva I.A., Glupov V.V. and Khramtsov V.V. 2005. Superoxide and hydrogen peroxide formation during enzymatic oxidation of DOPA by phenoloxidase. Free Radical Research, 39: 853–858. https://doi.org/10.1080/10715760500166693

Kumar S., Cristophides G.K., Cantera R., Charles B., Han Y.S., Meister S., Dimopoulos G., Kafatos F.C. and Barillas-Mury C. 2003. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae. Proceedings of the National Academy of Sciences, 100: 14139–14144. https://doi.org/10.1073/pnas.2036262100

Kwon T.H., Kim M.S., Choi H.W., Joo C.H., Cho M.Y. and Lee B.L. 2000. A masquerade-like serine proteinase homologue is necessary for phenoloxidase activity in the coleopteran insect, Holotrichia diomphalia larvae. European Journal of Biochemistry, 267: 6188–6196. https://doi.org/10.1046/j.1432-1327.2000.01695.x

Lanz-Mendoza H., Hernandez-Martinez S., Ku-Lopez M., Rodriguez M.D., Herrera-Ortiz A. and Rodriguez M.H. 2002. Superoxide anion in Anopheles albimanus hemolymph and midgut is toxic to Plasmodium berghei ookinetes. Journal of Parasitology, 88: 702–706. https://doi.org/10.1645/0022-3395(2002)088[0702:SAIAAH]2.0.CO;2

Lavine M.D. and Strand M.R. 2002. Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology, 32: 1295–1309. https://doi.org/10.1016/S0965-1748(02)00092-9

Li J.Y. 1994. Egg chorion tanning in Aedes aegypti mosquito. Comparative Biochemistry and Physiology, A Physiology, 109: 835–843. https://doi.org/10.1016/0300-9629(94)90231-3

Li J.Y., Hodgeman B.A. and Christensen B.M. 1996. Involvement of peroxidase in chorion hardening in Aedes aegypti. Insect Biochemistry and Molecular Biology, 26: 309–317. https://doi.org/10.1016/0965-1748(95)00099-2

Mastore M., Kohler L. and Nappi A.J. 2005. Production and utilization of hydrogen peroxide associated with melanogenesis and tyrosinase-mediated oxidation of DOPA and dopamine. FEBS Journal, 272: 2407–2415. https://doi.org/10.1111/j.1742-4658.2005.04661.x

McGraw K.J. 2003. Melanins, metals, and mate quality. Oikos, 102: 402–406. https://doi.org/10.1034/j.1600-0579.2003.12513.x

Nappi A.J. and Christensen B.M. 2005. Melanogenesis and associated cytotoxic reactions: applications to insect cellular immune reacions. Insect Biochemistry and Molecular Biology, 35: 443–459. https://doi.org/10.1016/j.ibmb.2005.01.014

Nappi A.J. and Ottaviani E. 2000. Cytotoxicity and cytotoxic molecules in invertebrates BioEssay, 22: 469–480. https://doi.org/10.1002/(SICI)1521-1878(200005)22:5<469::AID-BIES9>3.0.CO;2-4

Nappi A.J. and Vass E. 1993. Melanogenesis and the generation of cytotoxic molecules during insect cellular immune reactions. Pigment Cell Research, 3: 117–126. https://doi.org/10.1111/j.1600-0749.1993.tb00590.x

Nappi A.J., Vass E., Frey F. and Carton Y. 1995. Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. European Journal of Cell Biology, 68: 450–456.

Nappi A.J. and Vass E. 1998. Hydrogen peroxide production in immune-reactive Drosophila melanogaster. Journal of Parasitology, 84: 1150–1157. https://doi.org/10.2307/3284664

Nappi A.J., Vass E., Frey F. and Carton Y. 2000. Nitric oxide involvement in Drosophila immunity. Nitric Oxide, 4: 423–430. https://doi.org/10.1006/niox.2000.0294

Noguchi H., Hayakawa Y. and Downer R.G.H. 1995. Elevation of dopamine levels in parasitized insect larvae. Insect Biochemistry and Molecular Biology, 25: 197–201. https://doi.org/10.1016/0965-1748(94)00054-L

Owen M.D. and Bouquillon A.I. 1992. The synthesis of dihydroxyphenylalanine (DOPA) in the cerebral ganglia of the cockroach, Periplaneta americana L. Insect Biochemistry and Molecular Biology, 22: 193–198. https://doi.org/10.1016/0965-1748(92)90159-C

Paskewitz S.M. and Riehle M. 1998. A factor preventing melanization of sephadex CM C–25 beads in Plasmodium-susceptible and refractory anopheles gambiae. Experimental Parasitology, 90: 34–41. https://doi.org/10.1006/expr.1998.4305

Qazi S. and Trimmer B.A. 1999. The role of nitric oxide in motoneuron spike activity and muscarinic-evoked changes in cGMP in the CNS of larval Manduca sexta. Journal of Comparative Phisiology, 185: 539–550. https://doi.org/10.1007/s003590050414

Reiter R.J. 1995. Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB Journal, 9: 526–533. https://doi.org/10.1096/fasebj.9.7.7737461

Richards D.M., Dean R.T. and Jessup W. 1988. Membrane proteins are critical targets in free radical mediated cytolysis. Biochimica et Biophysica Acta, 946: 281–288. https://doi.org/10.1016/0005-2736(88)90403-8

Slepneva I.A., Komarov D.A., Glupov V.V., Serebrov V.V. and Khramtsova V.V. 2003. Infuence of fungal infection on the DOPA-semiquinone and DOPA-quinone production in haemolymph of Galleria mellonella larvae. Biochemical and Biophysical Research Communications, 300: 188–191. https://doi.org/10.1016/S0006-291X(02)02766-3

Slepneva I.A., Glupov V.V., Sergeeva S.V. and Khramtsov V.V. 1999. EPR detection of reactive oxygen species in hemolymph of Galleria mellonella and Dendrolimus superans sibiricus (Lepidoptera) larvae. Biochemical and Biophysical Research Communications, 264: 212–215. https://doi.org/10.1006/bbrc.1999.1504

Soderhall K. 1999. Invertebrate immunity. Developmental and Comparative Immunology, 23: 263–266. https://doi.org/10.1016/S0145-305X(99)00009-9

Soderhall K. and Ajaxon R. 1982. Effect of quinones and melanin on mycelial growth of Aphanomyces spp. and extracellular protease of Aphanomyces astaci a parasite on crayfisch. Journal of Invertebrate Pathology, 39: 105–109. https://doi.org/10.1016/0022-2011(82)90164-1

Soderhall K. and Cerenius L. 1998. Role of the prophenoloxidase-activating system in invertebrate immunity. Current Opinion in Immunology, 10: 23–28. https://doi.org/10.1016/S0952-7915(98)80026-5

Soderhall K. and Smith V.J. 1986. The prophenoloxidase activating system: the biochemistry of its activation and role in Arthropod cellular immunity with special reference to Crustaceans. In: M. Brehelin (Ed.). Immunity in invertebrates. Spring-Verlag, Berlin: 208. https://doi.org/10.1007/978-3-642-70768-1_15

Sugumaran M. 2002. Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment Cell Research, 15: 2–9. https://doi.org/10.1034/j.1600-0749.2002.00056.x

Sugumaran M. and Bolton L. 1995. Direct evidence for quinone-quinone methide tautomerism during tyrosinase catalyzed oxidation of 4-allylcatechol. Biochemical and Biophysical Research Communications, 213: 469–474. https://doi.org/10.1006/bbrc.1995.2155

Sugumaran M. and Bolton L. 1998. Laccase and not tyrosinase is the enzyme responsible for quinone methide production from 2,6 dimethoxy 4 allyl phenol. Archives of Biochemistry and Biophysics, 353: 207–212. https://doi.org/10.1006/abbi.1998.0653

Sugumaran M. and Nelson E. 1998. Model sclerotization studies. 4. Generation of N-acetylmethionyl catechol adducts during tyrosinase-catalyzed oxidation of catechols in the presence of N-acetylmethionine. Archives of Insect Biochemistry and Physiology, 38: 44–52. https://doi.org/10.1002/(SICI)1520-6327(1998)38:1<44::AID-ARCH5>3.0.CO;2-V

Whitten M.M.A. and Ratcliffe N.A. 1999. In vitro superoxide activity in the haemolymph of the West Indian leaf cockroach, Blaberus discoidalis. Journal of Insect Physiology, 45: 667–675. https://doi.org/10.1016/S0022-1910(99)00039-6

Wilson K., Cotter S.C., Reeson A.F. and Pell J.K. 2001. Melanism and disease resistance in insects. Ecology Letters, 4: 637–649. https://doi.org/10.1046/j.1461-0248.2001.00279.x

Yamazaki Sh., Morioka Ch. and Itoh Sh. 2004. Kinetic evaluation of catalase and peroxygenase activities of tyrosinase. Biochemistry, 43: 11546–11553. https://doi.org/10.1021/bi048908f

Yu K.H., Kim K.N., Lee J.H., Lee H.S., Kim S.H., Cho K.Y., Nam M.H. and Lee I.H. 2002. Comparative study on characteristics of lysozymes from the hemolymph of three lepidopteran larvae, Galleria mellonella, Bombyx mori, Agrius convolvuli. Developmental and Comparative Immunology, 26: 707–713. https://doi.org/10.1016/S0145-305X(02)00027-7

Zhao X., Ferdig M.T., Li J. and Christensen B.M. 1995. Biochemical pathway of melanotic encapsulation of Brugia malayi in the mosquito, Armigeres subalbatus. Developmental and Comparative Immunology, 19: 205–215. https://doi.org/10.1016/0145-305X(95)00005-E

Zhu Y., Wang Y., Gorman M.J., Jiang H. and Kanost M.R. 2003. Manduca sexta serpin-3 regulates prophenoloxidase activation in response to infection by inhibiting prophenoloxidase-activating proteinases. Journal of Biological Chemistry, 278: 46556–46564. https://doi.org/10.1074/jbc.M309682200

 

© Zoological Institute of the Russian Academy of Sciences
Last modified: March 25, 2024