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Analysis of the time spent in the egg, larval and pupal stages by insects reveal a distinct 
pattern. Although, well fed individuals kept at high temperatures complete their  
development much faster than poorly fed individuals kept at low temperatures, 
nevertheless, they all spend the same  proportion  of  the  total  time  required  for 
development in each  developmental  stage. Data will be presented that indicate that 
ladybirds conform to this pattern. All stages of development appear to have the same lower 
developmental threshold. If this is true than it will greatly facilitate practical studies on the 
development of ladybirds and improve our understanding of how selection has shaped their 
life history strategies and those of insects in general. 
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INTRODUCTION 

That the developmental rate of insects increases 
with temperature is described by many models. 
To the best of our knowledge, the most 
appropriate model is that of SHARPE & DE 
MICHELLE (1977), which predicts a linear 
relationship between the developmental rate and 
temperature in the middle of the temperature 
range. The linear part of the relationship 
corresponds to temperatures that are ecologically 
relevant for insect development, and gives the 
most reliable approximation of developmental 
rate (J. Polechová personnal communication). 
Here we show that the linear approximation is the 
most appropriate for ladybirds (Coleoptera: 
Coccinellidae), and introduce the notion of 
developmental isomorphy. 

When data on duration of development are 
converted into its reciprocal, the developmental 
rate, the linear approximation of the relationship

between the rate of development and temperature 
enables us to calculate two virtual constants: the 
sum of effective temperatures, SET, i.e. the 
amount of heat needed to complete a 
developmental stage, and the lower 
developmental threshold, LDT, i.e. the 
temperature below which development ceases 
(e.g., HODEK & HONĚK 1996, pag. 65-71). The 
thermal constants SET and LDT can be used for 
the timing of life-history events, the 
determination of pre-adult thermal requirements 
when forecasting and monitoring agricultural and 
forestry pests, assessing natural enemies suitable 
for biological control, comparing populations, 
and determining the effect of phylogeny, 
geography, body size, food and other constraints 
on the duration of development. Since LUDWIG 
(1928) introduced this method it has been widely 
used, and there are several reviews of the results, 
including those for ladybirds (HONĚK & 
KOCOUREK 1990; HONĚK 1996; HODEK & 
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HONĚK 1996; KIRITANI 1997; DIXON 2000).  
If the proportion of total developmental time 

spent in a particular developmental stage does not 
change with temperature, than the LDT is the 
same for all developmental stages of a species, 
and it shows developmental isomorphy. 
Developmental isomorphy is known for 7 species 
of mites and 342 species from 11 insect orders 
(JAROŠÍK et al. 2002). Here developmental 
isomorphy is demonstrated in non-dormant 
ladybirds. We discuss how developmental 
isomorphy can greatly facilitate practical studies 
on the development of ladybirds.  

MATERIAL & METHODS 

The linear model 

The linear approximation of the relationship 
between the developmental rate, DR (i.e. 
proportion of development occurring per unit 
time) and temperature, t, can be described as DR 
= a + b.t, where a is the intercept with the y-axis, 
and b the slope of the linear function. From this 
equation, the lower developmental threshold, 
LDT, i.e. the temperature when development 
ceases (DR = 0, t = LDT) can be estimated as 
LDT = -a/b. Graphically, LDT is the value at 
which the relationship intercepts the temperature 
axis. Using the relationship between DR and t, the 
sum of effective temperatures, SET, i.e. number 
of day degrees above the LDT necessary for the 
completion of a particular developmental stage, 
can also be estimated. At the moment of 
completion of a development stage, DR = 1 and t 
= SET. Then, shifting y-axis so that a = 0, SET = 
1/b.  

Reliability of linear vs. exponential models of 
developmental rates 

To assess the suitability of a simple linear model 

for predicting thermal requirements, the accuracy 
of linear and exponential approximations of 
developmental rates were compared. Because the 
developmental rates at the very low and high 
temperatures for a species, where mortality 
sharply increases, are of little practical 
importance, only data for those temperatures 
where the mortality was lower than 10% of the 
maximum survivorship were included in the 
analysis. Then, the residuals of the linear and 
exponential approximations were compared using 
a paired T-test. The data used for this was that for 
Hyperapsis notata (DREYER et al. 1997), 
Harmonia axyridis (LAMANA & MILLER 1998), 
Scymnus levaillanti and Cycloneda sanguinea 
(ISIKBER 1999). These data sets are exceptional as 
they include the mortality experienced by the 
species at each temperature. 

Testing of developmental isomorphy 

The ratios of the times spent in each 
developmental stage at different constant 
temperatures (ºC) were recalculated from the data 
on duration of non-dormant development. In most 
cases, it was calculated as a ratio of time spent in 
a particular stage divided by the total pre-
imaginal development, i.e., 
(egg)/(egg+larva+pupa). However, data on a 
particular stage and an uncompleted total 
development, e.g., (larva)/(larva+ pupa) were 
also analysed. The calculations used data for three 
or more temperatures. The data was obtained 
from the studies listed in Table 1. All the 66 
populations of 48 species and subspecies were 
analysed to avoid bias in favour of the hypothesis 
being tested. All the data for each particular stage 
evaluated fell within the range of the linear 
relationship between the rate of development and 
temperature.
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Table 1 
The species and source of the data used for determining developmental isomorphy. 

Species Temp. (0C) 
 

Reference 
#1 Range 

Adalia bipunctata (L.) OBRYCKI & TAUBER (1981) 4 18.3-26.7
Adalia bipunctata (L.) HONĚK & KOCOUREK (1988) 4 15-24 
Adalia bipunctata (L.) GURNEY & HUSSEY (1970) 3 16-24 
Adalia flavomaculata DeGeer MICHELS & BATEMAN (1986) 3 25-29 
Brumus suturalis F. DE FLUITER (1939) 5 23.1-32.2
Calvia quattuordecimguttata (L.)  LAMANA & MILLER (1995) 3 14-26 
Calvia quattuordecimguttata (L.)  SEMYANOV (1980) 4 15-30 
Cheilomenes sulphurea (Olivier) OKROUHLÁ et al. (1983) 3 20-28 
Chilocorus stigma (Say) MUMA (1955) 3 16.7-26.7
Hyperaspis notata (Mulsant) CORREJO et al. (1991) 3 22-30 
Coccinella novemnotata Herbst MCMULLEN (1967) 3 15.6-26.7
Coccinella quinquepunctata L. HONĚK & KOCOUREK (1988) 4 15-24 
Coccinella septempunctata (L.) HONĚK &KOCOUREK (1988) 4 15-24 
Coccinella septempunctata (L.) HODEK (1958) 3 15-25 
Coccinella septempunctata (L.) BUTLER (1982) 4 17-25 
Coccinella septempunctata (L.) OBRYCKI & TAUBER (1981) 4 18.3-26.7
Coccinella septempunctata (L.) XIA et al. (1999) 3 15-25 
Coccinella septempunctata (L.) TRITISCH (1997) 3 17-25 
Coccinella septempunctata brucki Mulsant KAWAUCHI (1983)  4 15-25 
Coccinella septempunctata brucki Mulsant KAWAUCHI (1979) 3 20-30 
Coccinella septempunctata brucki Mulsant SAKURAI et al. (1991) 3 22-30 
Coccinella transversalis F. VEERAVEL & BASKARAN (1996) 3 18-30 
Coccinella transversoguttata Brown OBRYCKI & TAUBER (1981) 4 18.3-26.7
Coccinella trifasciata L. MILLER & LAMANA (1995) 5 18-34 
Coccinella undecimpunctata L. ERAKY & NASSER (1993) 4 14-26 
Coelophora quadrivittata Fauvel CHAZEAU (1981) 3 20-30 
Coleomegilla maculata (DeGeer) OBRYCKI & TAUBER (1978) 4 18.3-26.7
Coleomegilla maculata (DeGeer) GURNEY & HUSSEY (1970) 3 16-24 
Coleomegilla maculata lengi Timberlake WRIGHT & LAING (1978) 4 19-25 
Curinus coeruleus Mulsant DIRAVIAM & VIRAKTAMATH (1991) 4 22.8-25.8
Cycloneda sanguinea (L.) ISIKBER (1999) 4 20-27.5 
Cycloneda sanguinea (L.) GURNEY & HUSSEY (1970) 3 16-24 
Delphastus catalinae (Horn) HEMACHANDRA (1994) 3 20-26 
Eriopis connexa (Germar)  MILLER & PAUSTIAN (1992) 4 14-26 
Harmonia axyridis (Pallas)  KAWAUCHI (1979)  3 20-30 
Harmonia axyridis (Pallas)  LAMANA & MILLER (1998) 5 14-30 
Hippodamia convergens Guerin BUTLER & DICKERSON (1972) 4 20-28.9 
Hippodamia convergens Guerin OBRYCKI & TAUBER (1982) 5 15.6-26.7
Hippodamia parenthesis (Say) ORR & OBRYCKI (1990) 4 14-26 
Hippodamia quinquesignata (Kirby) KADDOU (1960) 3 15.6-30 
Hippodamia sinuata Mulsant MICHELS & BEHLE (1991) 4 15-30 
Hippodamia variegata Goetz MICHELS & BATEMAN (1986) 3 25-29 
Hyperaspis notata Mulsant DREYER ET AL. (1997) 5 18-32 
Lemnia biplagiata (Swartz) SEMYANOV & BEREZNAYA (1988) 3 20-30 
Lioadalia flavomaculata (DeGeer)  BROWN (1972) 6 13-27 
Menochilus sexmaculatus (F.) KAWAUCHI (1979) 3 20-30 
Menochilus sexmaculatus (F.) VEERAVEL & BASKARAN (1996) 3 18-30 

1Number of temperatures   

 57



 
 
 
 
 

8th International Symposium on Ecology of Aphidophaga 
University of the Azores, Ponta Delgada, 1-6 September 2002 

Table 1 (continued) 
The species and source of the data used for determining developmental isomorphy. 

Temp. (0C) Species Reference 
#1 Range 

Olla v-nigrum (Mulsant) KREITER (1985) 5 15-30 
Pharoscymnus flexibilis (Mulsant) SHARMA et al. (1990) 3 24-32 
Pharoscymnus numidicus (Mulsant) KEHAT (1967) 3 24-31 
Propylea japonica (Thunberg) KAWAUCHI (1979) 3 20-30 
Propylea japonica (Thunberg) KAWAUCHI (1983) 4 15-25 
Propylea quatuordecimpunctata (L.) HONĚK & KOCOUREK (1988) 3 15-24 
Propylea quatuordecimpunctata (L.) BAUMGAERTNER et al. (1987) 3 15.3-25.3 
Scymnus apiciflavus Motschulsky DE FLUITER (1939) 6 19.1-32.2 
Scymnus frontalis (F.) NARANJO et al. (1990) 3 15-26.2 
Scymnus hoffmani Weise ZHAO & WANG (1987) 4 18-30 
Scymnus hoffmani Weise KAWAUCHI (1983) 4 15-25 
Scymnus interruptus (Goeze) TAWFIK et al. (1973) 3 15.5-27.9 
Scymnus levaillanti  Mulsant ISIKBER (1999) 5 17.5-27.5 
Scymnus roepkei de Fluiter DE FLUITER (1939) 6 19.1-32.2 
Semiadalia undecimnotata (Schneider) HONĚK & KOCOUREK (1988) 4 15-24 
Stethorus bifidus Kapur PETERSON (1993) 5 12.5-27.5 
Stethorus punctillum Weise BERKER (1958) 3 19-35.6 
Stethorus japonicus H.Kamiya TANAKA (1966) 13 17-29 
Subcoccinella vigintiquatuorpunctata (L.) ALI (1971) 3 18-28 

1Number of temperatures   
 
Angular transformed proportion of total 

developmental time spent in a particular stage 
was plotted against temperature, and the existence 
of developmental isomorphy inferred from a zero 
change in proportion. Temperature was first 
regressed with a different intercept and a different 
slope for each stage (using average proportion for 
replicated data due to origin or photoperiod), and 
the significance was then evaluated by 
simultaneous deletion test. Individual studies on 
populations of the same species were analysed 
separately because the results varied due to 
differences in experimental design. The 
calculations were performed using general linear 
modelling in GLIM v. 4 (FRANCIS et al. 1994). 

To reach a general conclusion, all the data was 
then tested using meta-analysis, a statistical 
synthesis of the results of separate, independent 
experiments (HEDGES & OLKIN 1985; 
GUREWITCH & HEDGES 1993; COOPER & 
HEDGES 1994). The outcome of each analysis was 
represented by a quantitative index (the effect 

size), which is independent of sample size, and 
the null hypothesis that the overall effect size 
indicates a zero slope was tested. The assumption 
that the individual analyses share a common 
population effect size was tested by the 
homogeneity statistic Q (SHADISH & HADDOCK 
1994). Details of the statistical procedure are 
described in JAROŠÍK et al. (2002). 

RESULTS 

Linear vs. exponential models of developmental 
rate 

For the four ladybird species for which there is 
sufficient data on developmental rate and 
mortality, the linear model gave a better fit (R2 = 
0.991 ± 0.0102) than the exponential (R2 = 0.973 
± 0.0194) (t = 2.62; df = 3; P < 0.05) (Table 2). 
That is, the simple linear model is the best for 
practical purposes.  
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Table 2 
Comparison of explained variance (R2) obtained by 

fitting exponential (exp) and linear (lin) 
approximations to the relationships between 

developmental rate and temperature in 4 species of 
ladybirds. 

Species Stage R2 lin R2 exp 
Cycloneda sanguinea Pupa 0.990 0.960 
Harmonia axyridis Pupa 0.999 0.976 
Hyperaspis notata Egg - Adult 0.998 0.999 
Scymnus levaillanti Pupa 0.977 0.957 

Average  0.991 0.973 
Standard error  0.0102 0.0194 
 

D
ev

el
op

m
en

ta
l r

at
e 

(d
ay

-1
)

Tem perature (0C)

28%

50%

22%

Egg

Larva

Pupa

9.2 15 18 20 25

LDT

 Fig. 1. Effect of temperature (t) on rate of 
development (RD) within the linear range of the 
relationship for Propylea japonica. Data from 
Kawauchi (1983). The population is isomorphic and 
spent 28% of total development in egg, 50% in larva, 
and 22% in pupa at temperatures 15, 18, 20 and 25 0C. 
All developmental stages have a common lower 
developmental threshold (LDT = 9.2) and for 
assessment of the number of day-degrees above the 
LDT necessary for completion of a particular 
development stage the sum of effective temperatures 
can be determined at any temperature within the linear 
range. 

Developmental isomorphy  

Combining statistically the results of the 68 
studies in a meta-analysis indicated the overall 
prevalence of developmental isomorphy in 
ladybirds (the overall weighted average effect 
size: 7.10E-04 with 95% confidence interval from 
–2.94E-03 to 4.36E-03; homogeneity statistic Q = 
0.64, df = 65, p = 1). That is, all the populations 
and species showed developmental isomorphy.  

Developmental isomorphy in ladybirds 
implies no change in the proportion of time spent 

in a particular developmental stage with change 
in temperature. It is illustrated for Propylea 
japonica in Fig. 1. Therefore, within the 
temperature ranges with a linear relationship 
between RD and t, for each species there is (1) a 
proportional SET for completion of each 
developmental stage at each temperature and (2) a 
common LDT for all developmental stages.  

DISCUSSION 

Linear vs. non-linear models of developmental 
rate 

There are three categories of models of the 
relationship between temperature and duration of 
development in insects and other ectotherms 
(HONĚK 1999): (i) Non-linear. The objective of 
this kind of data fitting is the description of the 
developmental rate over a wide range of 
temperatures (e.g. STINNER et al. 1974; 
HAGSTRUM & MILLIKEN 1991). This type of 
model gives a good fit to the data, but the 
parameters have little biological meaning. (ii) 
Non-linear incorporating physiological and 
biochemical constants. These not only describe 
but also attempt to explain the relationship in 
terms of physiological mechanisms (e.g. LOGAN 
et al. 1976; SHARPE & DEMICHELLE 1977; 
SCHOOLFIELD et al. 1981; WAGNER et al. 1984, 
1991). (iii) A linear approximation. 

Models of type (ii) are often theoretically 
correct, but not tractable for most ecologists. In 
addition, only relatively recent models of this 
type (e.g. LACTIN et al. 1995) enable one to 
calculate lower developmental threshold. On the 
other hand, the type (iii) linear approximation 
within the range of temperatures ecologically 
relevant to where an insect lives, is a reliable 
model, and can be easily used to calculate two 
virtual constants: the lower developmental 
threshold, LDT (the temperature below which 
development ceases), and the sum of effective 
temperatures, SET (the amount of heat needed for 
completing a developmental stage). This greatly 
simplifies modelling. Therefore, we argue against 
non-linear models for practical purposes, and 
advocate the simple linear model. We believe that 
the simple linear model of the relationship 
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Even if LDTs are calculated from data 
collected over a range of ecologically relevant 
temperatures, and the regression of development 
rate on temperature is linear, the accuracy of the 
estimates is affected by errors in the estimates of 
the developmental rate (CAMPBELL et al. 1974). 
The low precision of LDTs is obvious from their 
standard errors (CAMPBELL et al. 1974), which 
are typically between 1-3 0C (J. JANÁČEK & A. 
HONĚK, unpublished data). Crucial from a 
statistical point of view is any bias in the 
measurements made at extreme temperatures. 
Important determinants of the slopes of the linear 
regressions, from which the LDTs are inferred, 
are the extreme values (see CRAWLEY 1993, p. 
78-82). Therefore, a relatively small bias in the 
developmental rates measured at extreme 
temperatures will cause a large shift in the LDT. 
Poor estimates of developmental rate are most 
likely at high temperatures because the precision 
with which the duration of development is 
measured is poor and the error large 
(development rate is the reciprocal of duration of 
development). 

between developmental rate and temperature 
gives the best approximation of LDT and SET in 
insects. 

The existence of a common LDT for all the 
developmental stages of a species 

When the data for ladybirds were plotted against 
temperature, the developmental isomorphy 
hypothesis was supported by a zero change in the 
proportion of the total developmental time spent 
in a particular stage of a development. 
Developmental isomorphy in the overall pattern 
of the data thus indicates that all the 
developmental stages of each ladybird species 
have a common LDT. If so, there should be little 
variation in the LDT between stages and instars 
within a species, and within populations of 
individual species. This is not supported by the 
literature on ladybird development (HONĚK & 
KOCOUREK 1990; HONĚK 1996; HODEK & 
HONĚK 1996). Therefore, if developmental 
isomorphy is a common feature of ladybirds, then 
a significant proportion of the variation in LDTs 
within species is illusory and possibly a 
consequence of how it is estimated from 
experimental data.  

CONCLUSIONS 

The existence of rate isomorphy in ladybirds has 
important practical implications for the timing of 
life-history events. The experimental procedure 
for determining the thermal development 
constants, LDT and SET, can be simplified. The 
lower developmental threshold can be determined 
based on data for one stage, preferably the pupa, 
which is little affected by factors other than 
temperature, and has a duration usually longer 
than that of the egg stage. SET may also be 
calculated from the duration of development at 
one temperature (Fig. 1). Thus more effort can be 
invested in greater precision in determining the 
length of development.  

What are the sources of error in estimating 
LDT? First, the values of developmental rate 
obtained at extreme (high or low) temperatures 
may violate developmental isomorphy (JAROŠÍK 
et al. 2002). At low temperatures there may be 
differential mortality. The individuals with the 
fastest development complete their development 
but the rest are more likely to succumb to adverse 
conditions, because their development is 
prolonged. Second, imprecise measurement of 
developmental time, particularly at high 
temperatures. As developmental rate increases 
with temperature, the number of observations per 
stage should also increase. To measure the rate of 
development with the same precision at low and 
high temperatures, the time interval must be 
proportional to the length of the development 
stage at each temperature. This is not the case in 
most studies (SHAFFER 1983; VAN RIJN et al. 
1995). A constant monitoring is the most 
probable source of bias in data collected at high 
temperatures. 
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