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Abstract. In the present study, immediate and trans-generational effects of parental diets
(i.e. abundant and scarce) were investigated in a ladybird beetle Anegleis cardoni (Weise).
Prey scarcity prolonged pre-oviposition period and reduced fecundity and egg viability.
Reduced survival and developmental rate of progeny was recorded under prey-scarce
conditions. The progeny of parents reared under prey-scarce conditions developed more
slowly than that of those reared under prey-abundant conditions, regardless of the
progeny diets. This study indicates the existence of parental diet effects on progeny

survival and developmental attributes.
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Introduction

Every organism requires a certain amount of energy
for development and survival. Favourable con-
ditions with adequate food and energy resources
combined with an inoffensive environment maxi-
mize the survival of organisms. Organisms must
respond in an adaptive manner to achieve higher
fitness levels in adverse conditions. Adaptation
to the surroundings is a natural process that
improves survival. Organisms are known to vary
their structure, function and behaviour to maximize
their fitness (Stearns, 1992). The quality and
quantity of diet are the key components that
influence life history traits in organisms including
insects (Blackenhorn, 2000).

Numerous studies abound on the effect of
varying quality (Lawton et al., 1980; Moczek, 1998;
Stamp, 2001) and quantity (Baumgartner et al., 1987;
Hodek and Honek, 1996) of diet on growth,
development and reproduction in insects. Prey
scarcity is known to affect fitness of the developing
life stages (Agarwala et al., 2001; Stamp, 2001) and
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the development of ovarioles (Hodek and Honek,
1996; Evans, 2000). There are reports that parental
diets affect reproduction and ovipositional pattern
of progeny (Boggs and Ross, 1993; Fox and Dingle,
1994) and even resorption of eggs (Cope and Fox,
2003; Omkar and Pervez, 2003).

The immediate effects of diet on survival and
reproduction of adults are well recorded; however,
the trans-generational effects need more attention.
A few studies in insects, viz. the flour beetle
Tribolium destructor Uyttemb (Reynolds, 1944),
gypsy moth Lymantria dispar (L.) (Rossiter, 1991a)
and predatory wasp Polistes fuscatus (Fab.) (Stamp,
2001), indicate that parental diet has a carry-over
or trans-generational effect on offspring even when
the affecting factors are nullified.

Environmental effects can act directly on the
developing organism. They can also come indirectly
through parents, influencing the phenotypic
development of the offspring, and are referred to
as paternal and maternal effects (Mousseau and
Fox, 1998; Bonduriansky and Head, 2007). These
effects influence the quality and quantity of
parental investment, which has been an area of
interest to evolutionary biologists under varying
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abiotic and biotic conditions (Gwynne, 1990;
Rossiter, 1991b; Hunt and Simmons, 2000). It has
been suggested that this investment may be either
from parents that increase the offspring survival or
may be genetic, leading to changes in phenotype or
genotype of the offspring. Variation in parental
investment has many implications in animal mating
systems and sexual selection (Thornhill and Alcock,
1983; Anderson, 1994). The development of off-
spring is influenced both by the nutrient reserve in
eggs and by the food provided to them during
development (Bertram and Strathmann, 1998).

The ladybird Anegleis cardoni (Weise) is an
attractively patterned, medium-sized beetle, which
has earlier been reported from patches of aphids,
viz. the cotton aphid Aphis gossypii Glover and the
groundnut aphid Aphis craccivora Koch (Omkar and
Bind, 1993). Both larvae and adults feed on e.g.
A. gossypii on eggplants, Solanum melongena
L. (Solanaceae), the cabbage aphid Brevicoryne
brassicae L. on Brassica oleracea L. (Brassicaceae),
the wheat aphid Macrosiphum miscanthi (Takahashi)
on wheat, Triticum aestivum L. (Poaceae) and the pea
aphid Macrosiphum pisi Kaltenbach on peas, Pisum
sativum L. (Fabaceae) (in Afroze, 2000). It has also
been reported to feed on whiteflies (Ramani et al.,
2002) and scale insects (Sundararaj, 2008).

A review of available literature revealed earlier
studies on this ladybird regarding the effect of prey
quality (Afroze, 2000; Omkar et al., 2009). Since a
biocontrol agent has to survive under both prey-
scarce and prey-abundant conditions in the field, it
is necessary to evaluate immediate and trans-
generational effects of prey quantity on parents and
their progeny. This study thus examines the effects
of parental resource conditions on reproductive
traits in a female ladybird beetle, and also looks for
interactions between the conditions experienced by
the parental generation and those experienced
by offspring. It is expected that the results of the
study will shed light on the fitness plasticity of
A. cardoni under varying prey conditions and thus
its efficacy as in aphid biocontrol.

Materials and methods

Laboratory maintenance

To establish stock culture, eggs, larvae, pupae and
adults of A. cardoni were collected from Ashoka
(Polyalthia longifolia Sonn. (Annonaceae)) trees
infested with A. gossypii located within the campus
of the Lucknow University (26°50'N, 80°54'E).
Mating pairs and different life stages of A. cardoni
were placed in separate Petri dishes (9.0 X 2.0 cm)
under constant abiotic laboratory conditions
(25 £ 2°C; 65 + 5% relative humidity and 14h
light-10h dark photoperiod) in an environmental

test chamber, and were provided with A. gossypii
along with the leaves of the host plant Lagenaria
vulgaris Seringe (Cucurbitaceae). The change in the
host plant was a result of the short duration of
A. gossypii infestations on P. longifolia. The aphid
supply was replenished every 24 h. Egg laying and
hatching were recorded. The hatched neonates were
reared in glass beakers (11.0 X 8.5cm) provided
with A. gossypii on leaves/twigs until adult
emergence. To ensure the adaptation of ladybirds
on a new host plant, the stock was maintained for
four generations prior to experimentation. Wild
stock was continuously added to experimental
stock to avoid inbreeding.

Experimental set-up

Two sets of experiments were designed to evaluate
the immediate and trans-generational effects
of prey quantity on parental and progeny gener-
ations. In the first experiment, the immediate effect
of diet on parental reproductive performance
was investigated. In the second experiment, the
trans-generational effect of parental diet and
immediate effect of larval diet on the progeny
developmental attributes were investigated.

Effect of diet on parental reproductive performance

Early instars of A. cardoni, viz. first, second and
third instars, consume 6-12 third instars of
A. gossypii per day, while fourth instars and adult
males and females consume 10-20 aphids per day
(Omkar, unpublished data). The treatments of prey-
abundant and prey-scarce conditions were estab-
lished on the basis of these data.

For evaluating the immediate effects of diet,
10-day-old adults were paired in plastic Petri dishes
and were allowed to mate. They were kept paired
for the entire duration of the experiment so as to
provide enough mating opportunities and thus
high fecundity and % egg viability. The pairs were
provided with either scarce or abundant supply of
A. gossypii. In prey-abundant conditions, the pairs
were provided with infested leaves bearing 25 third
instars of A. gossypii per day, while in the prey-
scarce set-up, the pairs were provided with 4-8
third instars of A. gossypii per individual per day.
A new supply of aphids was provided every
day. The adults were kept on these diets for 40 days
to observe oviposition of females. The number of
eggs laid was counted once per day at the time of
food change. Egg cannibalism was not observed
during the experiment. The pre-oviposition period
(from mating to first oviposition), daily fecundity
and % egg viability were recorded. The above set-
up was used in eight replicates (N = 8) for both
treatments.
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Effect of diet on progeny development

One hundred first instar larvae were randomly
selected from both prey-abundant and prey-scarce
treatments in experiment I. Half of the selected larvae
from each treatment were reared in glass beakers
(five larvae per beaker) under prey-scarce (2—4
aphids/larvae/day) and prey-abundant (8-12
aphids/larvae/day) conditions. These amounts
were increased when the larvae became fourth instars
and adults as in experiment I. The larvae were reared
until adult emergence. Larval rearing was done in
groups rather than individually to ensure maximum
survival (Omkar and Pathak, 2009). The experi-
mental design thus resulted in a total of four set-ups,
viz. (1) parental abundant, larval abundant condi-
tions, (2) parental abundant, larval scarce conditions,
(3) parental scarce, larval abundant conditions and
(4) parental scarce, larval scarce conditions.

The duration and survival of different immature
stages and partial developmental period (from
first instar to adult emergence) were recorded.
Immature survival (%) (no. of adults emerged /no. of
firstinstars X 100), growth index (% pupation/mean
larval duration), generation survival (no. of fema-
les/no. of first instars), sex ratio and mass
of emerging adults were recorded.

Data processing

The immediate effect of diet on parental generation
(experiment I) was assessed in terms of pre-
oviposition period, fecundity and % egg viability
using Student’s ¢-test. Correlation analysis was also
performed to determine the relationship between
fecundity and % egg viability in abundant and
scarce diet conditions using the MINITAB 13.1
statistical software.

To study the effect of larval diet on immature
development, survival and growth, data from the
prey-abundant and prey-scarce conditions within
a parental treatment were subjected to Student’s
t-test. The parameters that showed a statistically
significant effect of larval diet under both parental
conditions were selected for two-way ANOVA
followed by Tukey’s post hoc test, with parental and
larval diets acting as independent factors and the
measures acting as dependent factors. Furthermore,
male and female masses were also subjected to two-
way ANOVA as they form important determinants
of development and growth. Offspring from within
a diet regime were considered non-independent.

Results

Effect of diet on parental reproductive performance

Data revealed that pre-oviposition period
(T=—-216, P<0.05 df=14) was significantly
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Fig. 1. Pre-oviposition period of Anegleis cardoni when
fed on abundant and scarce diets

influenced by the diet provided to the adults. It was
longer (2.75 = 0.16 days) in adults fed on scarce
amounts of prey (Fig. 1). The difference in fecundity
(I'=9.98, P <0.001, df =14) and % egg viability
(T=776, P<0.001, df = 14) revealed statistically
significant effects of diet, with both being higher in
adults reared under prey-abundant conditions.
Results showed a significant and positive correlation
between fecundity and egg viability in abundant
diet conditions (r = 0.928, P < 0.001), but an insig-
nificant positive correlation in scarce diet conditions
(r=0.057, P > 0.05). Average age-specific fecundity
of A. cardoni when plotted reveals a regular pattern
of increased oviposition followed by troughs at
almost regular intervals of 2—-3 days. This ovipos-
ition pattern was found to be persistent under both
prey-scarce and prey-abundant conditions. How-
ever, difference in the height of peaks and depths of
troughs was visually evident under the two prey

14 —— Abundant conditions
—o— Scarce conditions

12 A
10 A

12}

)

80

()

—

)

3

Z

o N W~ o)} [e)
' L L L L

Fig. 2. Average age-specific fecundity of Anegleis cardoni
when fed on abundant and scarce diets. Dots with thick
line for abundant diet conditions and dots with thin line
for scarce diet conditions denote the average fecundity of
eight adults.
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Fig. 3. Average age-specific % egg viability of Anegleis

cardoni when fed on abundant and scarce diets. Dots with

thick line for abundant diet conditions and dots with thin

line for scarce diet conditions denote the average % egg
viability of eight adults.

conditions, especially in early life, with peaks being
higher and troughs being shallower under prey-
abundant conditions (Fig. 2). Similar results were
also found for age-specific egg viability (Fig. 3).

An insignificant (F = 0.84, P > 0.05, df =1, 14)
effect of diet treatments on % adult survivorship
was observed, with it being numerically greater
(81.25 £ 13.15%) in the case of prey-scarce con-
ditions compared with the case of abundant diet
conditions (62.5 = 15.66%).
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Individual and combined effects of diets on
progeny development

The partial developmental period (Fig. 4) and
generation survival (Table 1) were significantly
influenced by larval diet under both parental
regimes. The partial developmental period (Fig. 4)
was lesser and generation survival (Fig. 5)
was higher under abundant larval diet conditions.
There was no significant effect of larval diet under
both parental regimes on sex ratio and growth index.
When parents were provided with abundant diet,
scarce larval diet was found to significantly reduce
the developmental duration of first instars (Fig. 4)
and increase % immature survival (Table 1) under
abundant larval diet conditions. However, when the
parents were reared under prey-scarce conditions,
abundant larval diet significantly reduced the
duration of second instars and pupa (Fig. 4), and
increased the male and female mass (Fig. 6).
Results of two-way ANOVA revealed that
partial developmental period was significantly
influenced by parental and larval diets individu-
ally; however, their interaction was found to be
insignificant. The comparison of individual means
also showed a significant effect of both parental and
larval diets on the partial developmental period.
Both parental and larval diets were found to
significantly influence male mass individually as
well as via interaction, while no such effect was
seen on female mass. The interaction of both diets
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Fig. 4. Effect of different combinations of parental and larval diets (PALA, parental abundant, larval abundant; PALS,
parental abundant, larval scarce; PSLA, parental scarce, larval abundant; and PSLS, parental scarce, larval scarce) on
developmental durations of different life stages of Anegleis cardoni (* and ** denote t-values to be significant at P < 0.01

and P < 0.001, respectively).
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Table 1. Results of t-test showing the effects of different parental and larval diet combinations on developmental
attributes of Anegleis cardoni

Immature Male mass Female Adult Generation
Parental diet Larval diet survival (%) (mg) mass (mg) emergence (%) survival
Abundant condition = Abundant conditions 84.00 = 2.75 6.57 =0.14 7.70 042 96.75 * 1.79 44.00 + 4.00
Scarce conditions 7400 £ 328 643 +0.13 7.14 £0.57 94.83 =242 32.00 + 3.95
t-test 2.19 0.78 0.79 0.53 2.14
P value 0.035 0.440 0.432 0.596 0.039
Scarce condition Abundant conditions 69.00 = 3.07 5.96 =035 7.63 +0.11 96.25 = 2.05 36.00 + 3.43
Scarce conditions 60.00 =3.84 480 *034 627 *=0.18 92.08 = 2.80 23.00 = 2.63
t-test 1.82 2.38 6.60 1.17 3.01
P value 0.077 0.022 0.001 0.251 0.005

Values given are means *+ SE.

had no significant effect on generation survival,
whereas parental and larval diets significantly
influenced it (Table 2).

Discussion

In the present investigation, a two-tiered effect of
diet was studied. The first tier involved deciphering
the effect of diet on parental reproductive output,
while the second tier tried to comprehend the
immediate effect of larval diet and the trans-
generational influence of parental diet on the
growth, developmental and survival attributes of
the offspring. Through this study, we measured the
effect of food restriction on parental and progeny
generations.

Parental diet was found to increase both
fecundity and % egg viability under prey-abundant
conditions and to reduce pre-oviposition periods.
Results revealed that the prey quantity is directly
proportional to the fecundity and egg viability, i.e.
if prey quantity is reduced, then the fecundity and
egg viability will also reduce. This negative
influence of reduced prey quantity can be attributed
to the availability of decreased nutrient resources,
which restrict the development and reproduction of
the predator (Majerus, 1994; Hodek and Honek,
1996; Moczek, 1998; O’Brien et al., 2005).

Reduced fecundity under decreased food supply
may be due to (1) non-availability of critical dietary
proteins (or amino acids), which facilitate oogenesis
(Fox et al., 1996; Cope and Fox, 2003) and
development of chorion (Lemos et al., 2001),
(2) reduction in sperm or ancillary fluid production,
which in turn might limit female reproductive
output (Droney, 1996) and (3) resorption of eggs
or holding back of oviposition under prey-scarce
conditions in anticipation of prey-abundant con-
ditions (Boggs and Ross, 1993). These reasons
individually or collectively might be responsible for
the lower fecundity of females fed on prey-scarce
diet than those fed on prey-abundant diet, with

(1) and (3) being more likely to explain the
phenomenon.

The age-specific fecundity (Fig. 2) as well as egg
viability (Fig. 3) graphs under both prey-scarce and
prey-abundant conditions revealed a peculiar
pattern of peaks and troughs, with repeats every
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Fig. 5. Effect of different combinations of parental
and larval diets on (A) immature survival (%), and (B)
generation survival of Anegleis cardoni (PALA, parental
abundant, larval abundant; PALS, parental abundant,
larval scarce; PSLA, parental scarce, larval abundant; and
PSLS, parental scarce, larval scarce).
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Fig. 6. Adult mass of Anegleis cardoni when fed on
different combinations of parental and larval diets
(PALA, parental abundant, larval abundant; PALS,
parental abundant, larval scarce; PSLA, parental scarce,
larval abundant; and PSLS, parental scarce, larval scarce).

2-3 days. Previous studies have mentioned
triangular fecundity graphs with consistent
increase in oviposition till the peak, followed by a
decrease (Dixon and Agarwala, 2002). However,
such an undulating increase has not been reported
previously in any ladybird. Despite the changes in
the pattern of age-specific fecundity, it was
observed that parents that were reared under
prey-abundant conditions reproduced more
actively in the earlier phase of life, as has been
reported previously (Kindlmann et al., 2001; Dixon
and Agarwala, 2002).

The reduced egg viability under prey-scarce
conditions as recorded in the present investigation
may be attributed to (1) decreased yolk quality
and quantity due to a low level of nutrients, which
may not support development (Omkar and James,
2004; Boggs and Freeman, 2005; Geister et al., 2008),
and (2) reduced sperm production due to slow
spermatogenesis and lower rate of sperm survival
in the males (Ponsonby and Copland, 1998).

A strong positive correlation between fecundity
and egg viability in both abundant and scarce diet
conditions was recorded in this study. Results
revealed that abundant diet promotes increased

fecundity and egg viability, which may partly be
attributed to acceleration in spermatogenesis and
increased sperm survival (Ponsonby and Copland,
1998). Dixon and Guo (1993) also proposed that
although fecundity was associated with the size
of the female, availability of food might have a
greater impact.

An interesting result is the decreased survival or
decreased longevity of adults reared under prey-
abundant conditions. This may be a result of the
increased expenditure on reproduction under prey-
abundant conditions, as it is well known that
increased reproduction reduces adult longevity
(Tatar et al.,, 1993; Mishra and Omkar, 2006).
However, those reared under prey-scarce condi-
tions are likely to spend more energy for mainten-
ance instead of for reproduction, thus increasing
survival. This has also been reported in the
ladybeetle Harmonia axyridis (Pallas) (Agarwala
et al.,, 2008) and in a water strider Gerris buenoi
Kirkaldy (Rowe and Schudder, 1990).

Immediate effects of larval diet were observed
on partial developmental period and generation
survival in both parental diet conditions. Slower
overall development of immature stages and
reduced survival were observed under the prey-
scarce larval diet. Such a slowing down of develop-
ment under prey-scarce conditions has also been
reported previously (Bertram and Strathmann,
1998; Agarwala et al., 2001; Boggs and Freeman,
2005; Agarwala et al., 2008), and may be ascribed
to the decreased availability of nutrition. It is well
known that the minimum amount of energy
required by each larval stage to develop into the
next stage is regulated by diet quantity (West and
Costlow, 1987). However, the interesting point is
that variation in larval diet was found to signifi-
cantly influence the development of first instars
when parents had been reared on abundant diet,
while in the other case of prey-scarce parental diet,
the differences were observed at the second instar
and pupal stage levels. This needs to be checked for
repeatability, and if found to be persistent, it would
form an interesting point of research.

Two-way ANOVA also revealed a trans-
generational effect of parental diet. Partial develop-
mental period, male mass and generation survival

Table 2. Results of two-way ANOVA showing the individual as well as the combined effect of parental and larval

diets on biological traits of Anegleis cardoni

Biological traits Parental diet P value Larval diet P value Interaction P value
Partial developmental period 23.94 0.001 16.51 0.001 1.42 0.236
Male mass 18.23 0.001 6.26 0.015 3.78 0.056
Female mass 1.64 0.204 6.84 0.011 0.09 0.278
Generation survival 5.75 0.019 12.42 0.001 0.02 0.888

Values given in columns 2 and 4 are F values; df =1, 76.
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were found to be influenced by not only larval diet
but also parental diet. This indicates a probable
paternal investment in the development and
survival of progeny. Such an effect of parental diet
on the development of immature stages has been
reported in the flour beetle T. destructor (Reynolds,
1944), the gypsy moth L. dispar (Rossiter, 1991a) and
the predatory wasp P. fuscatus (Stamp, 2001). These
effects are suggested to be transmitted to develop-
ing offspring in various ways and stages. They can
simply constrain development. For example, par-
ental diet-scarce conditions give rise to poorly
provisioned, low-quality offspring. However, it is
also possible that environmental conditions during
the development shape the offspring phenotype in
such a way as to better prepare it for adverse
environments (Fox et al., 1999; Fox and Czesak,
2000; Monaghan, 2008).

The faster development of offspring under
parental abundant, larval scarce conditions than
those under parental scarce, larval abundant
conditions signifies that retardation of offspring
development due to nutrient deficiencies in
parental diet was not completely compensated
by sufficient diet provided to the offspring. This
has also been reported in T. destructor (Reynolds,
1944), the sooty copper Lycaena tityrus Poda (Fisher
and Fiedler, 2001) and Telostylinus angusticollis
(Enderlein) (Diptera: Neriidae) (Bonduriansky and
Head, 2007).

Campbell (1962) hypothesized that the develop-
mental capabilities of an individual were fixed
during embryogenesis by offspring genotype and
maternal egg provisions (maintained by quantity
and quality of diet), which together set the rates of
cell division and cell expansion for biological
attributes (i.e. developmental rate, body size and
reproductive capacity). An explanation for the
observed effects of parental diet on offspring is
an elevation of the germline maturation rate
in stressful (scarce diet) environments (Agarwal,
2002), probably accounting for reduced quality of
offspring from parents reared under scarce diet
conditions, as seen in the present study.

The parental investment is usually controlled by
the nutrient supply. Parental nutrition had signifi-
cant and detectable effects on offspring growth,
but the effects on growth were small compared with
the effects of offspring nutrition (Bertram and
Strathmann, 1998). Alteration in the patterns of
allocation based on qualitative and quantitative
diet variations and the switching on of genetic
mechanisms in offspring of underfed parents
probably causes them to develop more slowly. This
may cause them to gain enough food resources
slowly and steadily to facilitate moulting to the next
stage (Boggs and Ross, 1993), which may be a
mechanism to explain the present results. Earlier

genetic studies in insects have revealed the
expression of a particular subset of genes in order
to survive environmental stress, such as low food
quality or quantity, which induces a number of
physiological and behavioural alterations in insects
(Slansky and Scriber, 1985). Feeding on a suboptimal
diet is also suspected to lead to alteration of gene
expression over generations (Yocum and Evenson,
2002), whereas increased food availability is likely to
enhance the response of a predator by a direct and
rapid improvement in fitness and enhancement of
its progeny.

Such probable paternal and maternal provision-
ing influenced the body size and survival of
offspring produced in our study. Similar findings
were recorded earlier (Schmid-Hempel and
Schmid-Hempel, 1998; Hunt and Simmons, 2000).
In the present study, parental diet influenced
the survival and mass of males, but not of females.
The reason for the lack of effect in female mass may
be that males are better competitors than females.
However, offspring diet is known to affect the adult
mass (Boggs and Freeman, 2005; Agarwala et al.,
2008) and subsequent reproductive success (Spence
et al., 1996).

Thus it may be inferred that the life history traits
change in response to nutrient stress. The diet
not only has effects directly at the parental level but
also has a trans-generational effect. The successful
development of both larvae and adults under
food-stressed conditions indicates the ability of
ladybird beetles to survive and reproduce even
under adverse conditions. The probable existence
of a trans-generational effect in A. cardoni needs to
be further worked upon through rigorous experi-
mentation.
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