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ABSTRACT

In this study, | fed Podisus maculiventris (Say) (Hemiptera: Pentatomidae) and
Ceoleomegilla maculara DeCGeer {Coleoptera: Coccinellidae) different concentrations of
purified Cry3Aa d-endotoxin, the insecticidal protein expressed by NewLeaf™ transgenic
potatoes. The maximum dose was S0pg Cry3Aa/g food for P maculiventris and 200 pg
Cry3Aa/g food for O maculara, | found no effect on either developmental rate or
survivorship for either species, even at the highest doses, strongly indicating that Cry3Aa
poses virtually no risk to these predators. Frass from C. macwata in the highest dose
treatment contained enough active Cry3Aa protein to cause significant mortality in early
instar Leprinotarsa decemlineata Say (Coleoptera: Chrysomelidae) (Colorado potato
beetle). Colorado potato beetle showed no sigmificant mortality when exposed to frass
trom F. maculiveniris in either the highest dose treatment or an additional treatment of
500 pg Cry3Aalg food, although some mortality was observed when they ingesied P.
mactliveniris carcasses from the 500 pg/e treatment. This suggests that P. maculiventris
digests Cry3Aa, while C maculata does not,
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INTRODUCTION

Insect-resistant crops arnved in the agriculiural marketplace in 1995 when Ciba
Seeds released Maximizer™ corn with “built-in” Knockowt™ control for European corn
borers (ECB). Several companies followed suit with sirmilar com products, and in 1996
Monsanto Company released Bollgard® transgenic cotton and NewLeaf™ transgenic
potatoes. All of these plants can be grouped as “Bt™ transgenic crops—that is, plants that
have been genetically engineered to express toxins that are ordinarily only found in
subspecies of the bacteria, Bacillus thuringiensis’

B. thuringiensis 15 a group of bacteria that produces insecticidal erystal proteins
(ICP) during sporulation. Different subspecies produce different ICPs, each of which
contains the precursors {or protoxins) for one or more d-endotoxins—the active proteins
that can be acutely toxic 1o specific target insects. This specificity was the basis for
grouping and naming Bt toxins {also known as Cry proteins) for almost 90 vears, until
Crickmore er o, developed the current nomenclature based on amino acid sequences
(1993).

Transgenic corn, cofton, and potatoes, for example, each contain a different gens
for expressing a d-endotoxin that targets a different pest. Each introduced gene is a
svmthetic construct that has been optimized for expression in plants by increasing the
cytosine:guanine base-pair ratio; these modifications, however, do not alter the final
protein, which has an amino acid sequence identical to that of the wild-type d-endotoxin
(Perlak ef al., 1993), Several commercially-important Cry proteins and the B,

thuringiensiy subspecies in which they are found are shown in Table 1.

' In this paper, Bacilfus ihmringiensis refers to the bacteria, while Bt refers to the bioinsecticide,



Table 1. Overview of some of the more widely used Bacillus thuringiensis toxins,
{Crickmore # al., 2002, and van Frankenhuyzen, K. and C. Nysirom, 2002)

Commercial
. i . Target Target species for GM crops
Toxin Bt su e order commercial applications  with toxin
gene
CrvlAa  fkurstali, sotto,  Lepidoptera  diamondback moth, none
aizawal, leafrollers
entomocidus,
dendrolinmus
CrvlAb  berliner, Lepidoptera  European com borer, corn - comn
kurstaki, earworm, spruce budworm,
atzawai tent caterpillar, gypsy
moth, diamondback moth,
cabbage looper, tobacco
budworm, and cabbage
Worm
CrylAc  kwrstaki, kemyae Lepidoptera  cotton bollworm, tobacco  cotton, corn
budworm and pink
bollworm, European com
borer
CoyvlCa  aizawal, Diptera, mosquitoes none
entomociduy Lepidoptera
Cry2Aa  kurstaki, sotto,  Lepidoptera  gypsy moth, tobacco none
kenyae - budworm, European com
(Diptera?) borer, mosquito
Cry3Aa  san diego, Coleoptera  Colorado potato beetle potato**
fenehrionis,
morrisoni
CrydAa  israelensis Diptera mosquitoes none
CrydBa israelensis Diptera WS W toves THOTHE
Cry9C  rohworthi Lepidoptera  European corn borer corn**



Insecticides containing cultures of B thuringiensis subspecies and 1CPs have been
used as alternatives to chemical pesticides for decades. They degrade quickly in the
presence of ulira-violet radiation (Pusztal er al., 1991}, thereby reducing the risks
associated with environmental persisience. As well, they tend to be much more target-
specific than synthetic insecticides because the Bt protein in the formulation cannot be
processed into an active toxin or bound to an active site unless the environment inside the
insect is suitable. Once an [CP has been ingested, it must dissolve in the insect’s digestive
fluids (requiring a specific pH), then be processed by specific enzymes into a truncated,
active form that must bind to specific receptors before it can have any effect on the insect
that consumed it (Oppert, 1999, Knowles, 1994; Gill, 1992; Li, 1991).

Elements of these environmental safeguards are lost when B. thuringiensis
proteins are expressed in transgenic crop plants (e.g., see Jepson ef al., 1994; Schuler e
al., 1998; de Maagd er af,, 1999; Cannon, 2000; Hilbeck, 2001; and Obrycki er af., 2001).
Environmenial persistence becomes a concern because the plants express the protein
throughout the entire growing season, and possibly longer if residues are left in the soil
{e.g. Stotzky, 2000). As well, the protein expressed by transgenic plants is several
processing-steps closer to the active toxin than are the precursor forms applied in
traditional Bt msecticides, possibly broadening the spectrum of activity {e.g. Hilbeck,
2001; Perlak, 1993,

Preserving healthy populations of beneficial, non-target insect species is a critical
part of integrated pest management (IPM), which, in tum, is an essential strategy if
farmers are 1o realize the economic and environmental benefits offered by transgenic

crops. Predators and parasitoids can reduce the abundance of non-susceptible pest species



and stages, as well as help curb the rise of resistance in a population (Reed e af, 2001;
Riddick er af., 2000; Arpaia ef al., 1997}, It is, therefore, important to ensure that proteins
expressed by transgenic crops do not accidentally intoxicate beneficial insects along with
target pest species.

Maturally occurring predatory insects in potato fields include coccinellid and
carabid beetles, tachinid flies, and predatory hemipterans, including members of the
families Nabidae, Anthocoridae, Lygaeidae, and Pentatomidae. In this study, [ examined
the effects of chronic Cry3Aa exposure on nymphs of Podisus maculiventris Say
(Hemipiera: Pentatomidae) and Coleomegilla macwlata DeGeer (Coleoptera:
Coceinellidas). Both species are native with ranges that span large areas in the United
States and Canada. Both are also reared commercially as biocontrol agents and are
considered important for controlling Leptinotarsa decemlineata Say (Coleoptera:
Chrysomelidae) (Colorado potato beetle (CPB)) {(Boiteaw, 1988, in Biever and Chauvin,
1992; Groden et af. 1990; Arpaia, 1997).

I chose to focus on a hemipteran and a coceinellid because members of these
groups possess digestive enzymes similar to those of chrysomelid beetles (including
CPB): that is, they are cysteine-based (Terra and Ferreira, 1994), Tachinid flies and
carabid beetles, on the other hand, have trypsin-based digestive enzymes, and therefore
are less likely to possess the proteinases required to cleave the Cry3Aa protein into its
active form,

The null hypothesis for this study is that there will be no difference in the
developmental rate and the survival rate between predators reared on diet containing
Cry3Aa d-endotoxin and those reared on untreated diet. The alternative hypothesis is that



predators reared on Crv3Aa will take longer to develop or more will die before reaching
maturity when they are reared on Cry3Aa

[ also conducted a much smaller investigation into the fate of Cry3Aa afier
ingestion by a predator. In particular, [ wanted to know whether P. maculiveniris or C.
macilare were able to digest the toxin, thereby eliminating it from the environment, or if
it passed right through, creating another rowte of exposure for non-target insects and
possibly accumulating in the soil.

Background

Mechanism of action and CPB response to foxicity
Cry3Aa is one of the proteins produced by B thuringiensis subspecies renebrionis,

and san diego and has been genetically engineered into Monsanto Company's
Newleaf™ potato line®, It is toxic to insects from the families Tenebrionidae and
Chrysomelidae, and is particularly effective against early-instar CPB, not only killing the
insects but also quickly inhibiting feeding activity, thereby minimizing damage to foliage
(Ferro and Gelemter, 1989).

Cry3Aa is typical of Bt toxing in that it damages the gut lining of insects (eg,
Cannon, 1996, Gill et al., 1992 Slaney er al., 1992, Knowles, 1994). In susceptible
insects like CPRB, it recognizes specific receptors on the brush border membrane cells of
the gut epithelium, binds, and penetrates the cell membrane. Aggregates form, creating
pores that permit ions to rush into the cell, causing it to swell and eventually lyse. Within
a matter of days (depending on the dose}, sections of the midgut lining are destroyed and

the insect dies.

* This line was discontinued in 2001 when several fasi food chains, including MecDonald's, bowed to
public pressare and refused to buy genetically modified potatoes (Wall Street Journal REF).



Proteolyfic processing
MNewLeaf™ potatoes express a 68 kDa protein that appears 1o be the same as the

d-endotoxin from B thuringiensis subsp, renebrionis (CFLA, 1996). Slaney ef al. (1992)
reported that this S-endotoxin was “naturally truncated” and required no proteolytic
processing to become active, based on their failure to find shorter, stable proteolytic
fragments after treating it with CPB digestive juices. Later studies, however, have shown
that digesting the protein with chrysomelid gut juices can produce smaller, stable
fragments that are more soluble at chrysomelid gut pH {4.5-6.6) and more structurally
suited to binding (Oppert, 199%; Carroll ef al , 1997).

Carroll e al. (1997) found that chymotrypsin from CPB midguts trimmed the 3-
endotoxin to a 49 kDa protein that was soluble at pH 2.9 — 9.1 and bound readily to brush
border membrane vesicles made from CPB mideuts. This 49 kDa protein was not present
in samples digested with yellow mealworm { Tenebrio molitor) gut extract; instead, a
slightly larger (though still truncated) 55 kDa protein was found, closely associated with
an 8-11 kDa fragment. This 35 kDa product was not soluble at the near-neutral pH of the
mealworm midgut, even though mealworms are somewhat susceptible to Cry3Aa,
suggesting that other factors may be involved. This raises the possibility that the final
stages of processing and even the resulting activated toxin may differ between target
species.

The degree to which the 68 kDa protein must be processed and the stability of the
resulting products are important when considering non-targel effects. If processing is
required to activate a toxin, it is less likely to affect insects that do not possess the
necessary proteases, or whose digestive tract is at the wrong pH. Current knowledge of

insect digestive enzymes is rather sparse but, even so, it may be possible to identify



insects that may be at greater risk than others. O maculata and P macufiveniris, for
example, both have midguts at pH 5-6, which is in the same range as members of
Chrysomelidae { Terra and Ferreira, 1994). As well, chrysomelids, coccinellids, and
hemipterans all rely on cysteine protemases as the predominant proteinases in their
digestive systems—a physiclogical characteristic that is unique o Hemiptera and some
members of Coleoptera (Terra and Ferreira, 1994).

Furthermore, if the final, activated toxin is stable, it might be passed on in its
active form to non-target predators. This possibility has not been widely explored;
however, Hilbeck er al. (1999} alluded to it in attempting to explain their findings that
common green lacewings {Chrysoperla carned) suffered higher mortality and greater
delays in development when reared on Cry 1 Ab-fed prey compared to those fed Cryvl Ab
in artificial diet.

Effects of transgenic crop-fed prey on predators: previous studies

Given the number of insect species exposed to Bt toxins in the cause of pest
control, there are few published studies assessing the toxicity of Bt toxins on non-target,
predatory insect species (Tables 2 and 3). Of these, only 10 involve purified d-endotoxins
produced by transgenic crops (or the equivalent protein produced in £ coli), including
findings from 2 groups that directly contradict each other.

In ome study, Pilcher ef el (1997) tound that ingesting pollen from transgenic
com plants {expressing CrylAb) had no effect on mortality of common green lacewings.
Mortality rates were greater than 50% in both the treated and the control groups,
however, possibly because the lacewings had to be coerced into eating the pollen by
having their preferred food withheld for 24h periods at three points in their development.

Even so, the authors concluded that lacewings were not susceptible to CrylAb.
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Another study, however, sugpests that lacewings are susceptible 1o CryvlAb, In
1998, Hilbeck er al. found that 62% of lacewings fed lepidopteran prey (ECB and
Spodoprera lirtoralis) reared on Cryl Ab-transgenic com foliage died before reaching
adulthood, compared to 37% in the control group {fed lepidopteran prey reared on non-
ransgenic com). [n response to criticism from many sources, including the Select
Committee on Evropean Communities (1999), Hilbeck ef af. conducted follow-up studies
using prey reared on Cryl Ab +/- artificial diet (1999) and CrylAb +/- lacewing artificial
diet (1998b). In both cases, lacewings exposed to CrylAb (in whatever form)
experienced significantly higher mortality than those fed non-Cry1 Ab diets.

Studies assessing non-target effects of Cry3Aa are especially scarce (Table 3). [n
1994, Giroux et al. {1994) reared . maculata on pollen and found that they developed
significantly more slowly when the pollen had been treated with M-One™ | a commercial
formulation of B. thuringiensis subspecies san diego from Mycogen Corporation. Dogan
et al. (1996) fed aphids reared on Cry3Aa potatoes to ladybird beetles (Hippodamia
convergens) and looked for effects on aphid consumption, development times (for each
larval stage plus pupation), fecundity, and longevity. They found no difference between
beetles fed aphids from transgenic potato plants expressing Cry3Aa and thoss in the
control (i.e., fed non-transgenic potato plants). However, aphids feed on phloem sap and
therefore may not ingest Cry3Aa at all (Raps et al., 2001).

In 19498, Riddick and Barbosa conducted several experiments to determine
whether CPB larvae reared on transgenic foliage expressing Cry3Aa had an effect on the
appetite, development and fecundity of C maculare. They found no effects, although
their study has been eriticized by Hilbeck er af. {2000) for several reasons, inclhuding very
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high mortality in all treatments, including the controls (>50%) and fanlure to study first-
instar C. maculate, In general, susceptibility to Bi toxins decreases with age (Wierenga et
al., 1998). Only second instars and older were used in this study.
Routes of exposure

C. maculata and P. maculiveniris are not foliage feeders, however, pollen is an
important element of C. maculata’s diet (Pilcher ef al, 1997), while P. maculiventris are
polyphagous and will occasionally feed on plant juices. Consequently, there is a chance
that they will ingest Cry3Aa direcily, through plant matter. If they visit damaged
transgenic plants, they might also become contaminated by plant juices and then ingest
them while grooming.

Wore likely, the route of greatest exposure for generalist predators such as P,
maculiventris and C. macuwlate will be by consuming prey that has fed on transgenic
foliage. Hilbeck's studies with lacewings and lepidopteran prey { 1998a and 1999) would
seem to suggest that the toxin can be ingested by either a susceptible or a non-susceptible
insect and still retain some activity. Head e¢ al. (2001) demonstrated definitively that this
was the case, at least with Rhapalosiphum padi and three lepidopteran species, including
Ostrinia nubilalis (European comn borer (ECB)). They fed insects either ransgenic or
non-transgenic corn foliage for seven days, or artificial diet containing different
concentrations of Cry1 Ab for three days, and then measured the level of Cry1Ab in the
insects” tissues using enzyme-linked immunosorbent assays (ELISA). Cryl Ab was
detected in all species (although not in all ireatments, depending on the concentration in
the diet), with the highest levels found in the least susceptible species (1.¢., the ones that

fed more). They confirmed the activity of the toxin through bioassays in which aphids



