Review of the current objectives and modern approaches to studying extant and extinct shrews (Soricomorpha: Soricidae) investigation: the origin of the modern subfamilies and diversity of Crocidosoricinae

L.L. Voyta

Proceedings of the Zoological Institute RAS, 2021, 325(4): 409–429   ·   https://doi.org/10.31610/trudyzin/2021.325.4.409

Full text  

Abstract

The current review is devoted to topical issues of the origin of modern shrew’ subfamilies Soricinae Fischer, 1817 and Crocidurinae Milne-Edwards, 1868 (Soricomorpha: Soricidae), as well as to the consideration of the possibility of using morphological analysis to search for ancestral groups of modern soricine and crocidurine shrews within the extinct subfamily Crocidosoricinae Reumer, 1987. The data on the taxonomic composition of the Crocidosoricinae subfamily and the preliminary results of a comparative analysis of the Neogene shrews Miosorex Kretzoi, 1959 and Shargainosorex Zazhigin et Voyta, 2018 (Crocidosoricinae) shrews with the representatives of Soricinae and Crocidurinae according to the shape of the first upper molar M1 are presented as an example to substantiate urgent problems in this area. The problem of relations of molecular and morphological data are discussed using individual groups as examples. Modern approaches of geometric morphometry are described, which together with phylogenetic data allow assessing the expression of the phylogenetic signal when analysing the shape of morphological structures. Possible prospects for the practical application of these approaches for the study of fossil material and the search for ancestral lineages of modern shrews among Crocidosoricinae are described.

Key words

Crocidurinae, Crocidosoricinae, geometric morphometrics, morphology, phylogeny reconstruction, Soricidae, Soricinae, taxonomy, phylogenetic signal

Submitted August 16, 2021  ·  Accepted October 8, 2021  ·  Published December 25, 2021

References

Abramov A.V., Jenkins P.D., Rozhnov V.V. and Kalinin A.A. 2008. Description of a new species of Crocidura (Soricimorpha: Soricidae) from the island of Phu Quoc, Vietnam. Mammalia, 72: 269–272. https://doi.org/10.1515/MAMM.2008.033

Abramov A.V., Bannikova A.A., Chernetskaya D.M., Lebedev V.S. and Rozhnov V.V. 2017. The first record of Episoriculus umbrinus from Vietnam, with notes on the taxonomic composition of Episoriculus (Mammalia, Soricidae). Russian Journal of Theriology, 16: 117–128. https://doi.org/10.15298/rusjtheriol.16.2.01<

Adams D.C. 2014. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Systematic Biology, 63: 685–697. https://doi.org/10.1093/sysbio/syu030

Adams D.C. and Otárola-Castillo E. 2013. Geomorph: An R package for the collection and analysis of the geometric morphometric shape data. Methods in Ecology and Evolution, 4: 393–399. https://doi.org/10.1111/2041-210X.12035

Andino-Madrid A.J., Mérida Colindres J.E., Pérez-Consuegra S.G. and Matson J.O. 2020. A new species of long-tailed shrew of the genus Sorex (Eulipotyphla: Soricidae) from Sierra de Omoa, Honduras. Zootaxa, 4809: 56–70. https://doi.org/10.11646/zootaxa.4809.1.3

Anemone R.L., Skinner M.M. and Dirks W. 2012. Are there two distinct types of hypocone in Eocene primates? The ‘pseudohypocone’ of notharctines revisited. Palaeontologia Electronica, 15: 15.3.26A. https://palaeo-electronica.org/content/2012-issue-3-arti-cles/306-hypocones-in-eocene-adapids

Asher R.J., McKenna M.C., Emry R.J., Tabrum A.R. and Kron D.G. 2002. Morphology and relationships of Apternodus and other extinct, zalambdodont, placental mammals. Bulletin of the American Museum of Natural History, 273: 1–117. http://hdl.handle.net/2246/440

Bannikova A.A. and Lebedev V.S. 2012. Order Eulipotyphla. In: I.Ya. Pavlinov and A.A. Lissovsky (Eds). The Mammals of Russia: A Taxonomic and Geographic Reference (Archives of the Zoological Museum of Moscow State University). KMK Scientific Press, Moscow: 25–72.

Bannikova A.A., Abramov A.V., Lebedev V.S. and Sheftel B.I. 2017. Unexpectedly high genetic diversity of the Asiatic short-tailed shrews Blarinella (Mammalia, Lipotyphla, Soricidae). D okl ady Bi ological Sci en ces, 474: 93–97.

Bannikova A.A., Chernetskaya D., Raspopova A., Alexandrov D., Dokuchaev N., Sheftel B. and Lebedev V. 2018. Evolutionary history of the genus Sorex (Soricidae, Eulipotyphla) as inferred from multigene data. Zoologica Scripta, 47: 518–538. https://doi.org/10.1111/zsc.12302

Bannikova A.A., Jenkins P.D., Solovyeva E.N., Pavlova S.V., Demidova T.B., Simanovsky S.A., Sheftel B., Lebedev V., Fang Y., Dalen L. and Abramov A.V. 2019. Who are you, Griselda? A replacement name for a new genus of the Asiatic short-tailed shrews (Mammalia, Eulipotyphla, Soricidae): molecular and morphological analyses with the discussion of tribal affinities. ZooKeys, 888: 133–158. https://doi.org/10.3897/zookeys.888.37982

Black C. 1978. Paleontology and geology of the Badwater Creek Area, Central Wyoming. Part 14. The Artiodactyls. Annals of Carnegie Museum, 47: 223–259.

Brummitt R.K. 2002. How to chop up a tree. Taxon, 51: 31–41. https://doi.org/10.2307/1554961

Burgin C.J. 2018. Climbing Shrew Suncus megalurus. In: D.E. Wilson and A.M. Russell (Eds.) Handbook of the mammals of the world. Vol. 8. Insectivores, sloths and colugos. Lynx Edicions, Barcelona: 466.

Burgin C.J. and He K. 2018. Family Soricidae. In: D.E. Wilson and A.M. Russell (Eds). Handbook of the mammals of the world. Vol. 8. Insectivores, sloths and colugos. Lynx Edicions, Barcelona: 332–551.

Butle PM. 1998. Fossil history of shrews in Africa. In: J.M. Wójcik and M. Wolsan (Eds). Evolution of Shrews. Mammal Research Institute Polish Academy of Sciences, Białowiez˙a: 121–132.

Butler P.M. and Greenwood M. 1979. Soricidae (Mammalia) from the Early Pleistocene of Olduvai Gorge, Tanzania. Zoological Journal of the Linnean Society, 67: 329–379. https://doi.org/10.1111/j.1096-3642.1979.tb01119.x

Butle P.M., Thorpe R.S. and Greenwood M. 1989. Interspecific relations of African crocidurine shrews (Mammalia: Soricidae) based on multivariate analysis of mandibular date. Zoological Journal of the Linnean Society, 96: 373–412. https://doi.org/10.1111/j.1469-7998.2006.00125.x

Camargo I. and Álvarez-Castañeda S.T. 2020. A new species and three subspecies of the desert shrew (Notiosorex) from the Baja California peninsula and California. Journal of Mammalogy, 101: 872–886. https://doi.org/10.1093/jmammal/gyaa045

Ceríaco L.M.P., Marques M.P., Jacquet F., Nicolas V., Colyn M., Denys C., Sardinha P.C. and Bastos-Silveira C. 2015. Description of a new endemic species of shrew (Mammalia, Soricomorpha) from Príncipe Island (Gilf of Guinea). Mammalia, 79: 325–341. https://doi.org/10.1515/mammalia-2014-0056

Chen S., Qing J., Liu Z., Liu Y., Tang M., Murphy R.W., Pu Y., Wang X., Tang K., Guo K., Jang X. and Liu S. 2020. Multilocus phylogeny and cryptic diversity of white-toothed shrews (Mammalia, Eulipotyphla, Crocidura) in China. BMC Evolutionary Biology, 20: 29. https://doi.org/10.1186/s12862-020-1588-8

Collard M. and O’Higgins P. 2001. Ontogeny and homoplasy in the papionin monkey face. Evolution and Development, 3: 322–331.

Cornette R., Baylac M., Souter T. and Herrel A. 2013. Does shape covariation between the skull and the mandible have functional consequences? A 3D approach for a 3D problem. Journal of Anatomy, 223: 329–336. https://doi.org/10.1111/joa.12086

Cornette R., Tresset A. and Herrel A. 2015. The shrew tamed by Wolff’s Law: Do functional constraints shape the skull through muscle and bone covariation? Journal of Morphology, 276: 301–309. https://doi.org/10.1002/jmor.20339

Cosson J.-F., Hutterer R., Libois R., Sarà M., Taberlet P. and Vogel P. 2005. Phylogeographical footprints of the Strait of Gibraltar and Quaternary climatic fluctuations in the western Mediterranean: a case study with the greater white-toothed shrew, Crocidura russula (Mammalia: Soricidae). Molecular Ecology, 15: 1151–1162. https://doi.org/10.1111/j.1365-294x.2005.02476.x

Cucchi T., Mohaseb A., Peigné S., Debue K., Orlando L. and Mashkour M. 2017. Detecting taxonomic and phylogenetic signals in equid cheek teeth: towards new palaeontological and archaeological proxies. Royal Society Open Science, 4: 160997. https://doi.org/10.1098/rsos.160997

Demos T.C., Achmadi A.S., Handika H., Maharadatunkamsi, Rowe K.C. and Esselstyn J.A. 2017. A new species of shrew (Soricomorpha: Crocidura) from Java, Indonesia: possible character displacement despite interspecific gene flow. Journal of Mammalogy, 98: 183–193. https://doi.org/10.1093/jmammal/gyw183

Diersing V.E. 2019. Taxonomic revision of the long-tailed shrew, Sorex dispar Batchelder, 1911, from the Appalachian Region of North America, with the description of a new subspecies. Journal of Mammalogy, 100: 1837–1846. https://doi.org/10.1093/jmammal/gyz127

Dubey S., Salamin N., Ohdachi S.D., Barrière P. and Vogel P. 2007. Molecular phylogenetics of shrews (Mammalia: Soricidae) reveal timing of transcontinental colonization. Molecular Phylogenetics and Evolution, 44: 126–137. https://doi.org/10.1016/j.ympev.2006.12.002

Dubey S., Salamin N., Ruedi M., Barrière P., Colyn M. and Vogel P. 2008. Biogeographic origin and radiation of the Old World crocidurine shrews (Mammalia: Soricidae) inferred from mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution, 48: 953–963. https://doi.org/10.1016/j.ympev.2008.07.002

Engesser B. 1980. Insectivora und Chiroptera (Mammalia) aus dem Neogen der Türkei. Schweizerische Paläontologische Abhandlungen, 102: 4–149.

Esselstyn J.A. and Goodman S.M. 2010. New species of shrew (Soricidae: Crocidura) from Sibuyan Island, Philippines. Journal of Mammalogy, 91: 1467–1472. https://doi.org/10.1644/10-MAMM-A-002.1

Flynn L.J., Jacobs L.L., Kimura Y., Taylor L.H. and Tomida Y. 2020. Siwalik fossil Soricidae: A callibration point for the molecular phylogeny of Suncus. Paludicola, 12: 247–258.

Fumagalli L., Taberlet P., Stewart D.T., Gielli L., Hausser J. and Vogel P. 1999. Molecular phylogeny and evolution of Sorex shrews (Soricidae: Insectivora) inferred from mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution, 11: 222–235. https://doi.org/10.1006/mpev.1998.0568

Furió M., Santos-Cubedo A., Minwer-Barakat R. and Agusti J. 2007. Evolutionary history of the African soricid Myosorex (Insectivora, Mammalia) out of Africa. Journal of Vertebrate Paleontology, 27: 1018–1032. https://doi.org/10.1671/0272-4634(2007)27[1018:E-HOTAS]2.0.CO;2

Guillerme T., Coope r N., Brussate S.L., Davis K.E., Jackson A.L. et al. 2020. Disparities in the analysis of morphological disparity. Biology Letters, 16: 20200199. https://doi.org/10.1098/rsbl.2020.0199

He K., Chen X., Chen P., He S.-W., Cheng F., Jiang X.-L. and Campbell K.L. 2018. A new genus of Asiatic short-tailed shrew (Soricidae, Eulipotyphla) based on molecular and morphological comparisons. Zoological Research, 39: 309–323. https://doi.org/10.24272/j.issn.2095-8137.2018.058

Hugueney M. and Maridet O. 2011. Early Miocene soricids (Insectivora, Mammalia) from Limagne (Central France): New systematic comparisons, updated biostratigraphic data and evolutionary implications. Geobios, 44: 225–236. https://doi.org/10.1016/j.geobios.2010.11.006

Hugueney M., Maridet O., Mein P. and Mourer-Chau-viré C. 2015. Lartetium africanum (Lavocat, 1961) (Eulipotyphla, Soricidae) from Beni-Mellal (Morocco), the oldest African shrew: new descriptions, palaeoenvironment and comments on biochronological context. Palaeobiodiversity and Palaeoenvironments, 95: 465–476. https://doi.org/10.1007/s12549-015-0197-9

Hugueney M., Mein P. and Maridet O. 2012. Revision and new data on the Early and Middle Miocene soricids (Soricomorpha, Mammalia) from Central and South-Eastern France. Swiss Journal of Palaeontology, 131: 23–49. https://doi.org/10.1007/s13358-011-0036-1

Hulme-Beaman A., Claude J., Chaval Y., Evin A., Morand S., Vigne J.D., Dobney K. and Cucchi T. 2019. Dental shape variation and phylogenetic signal in the Rattini tribe species of mainland Southeast Asia. Journal of Mammalian Evolution, 26: 435–446. https://doi.org/10.1007/s10914-017-9423-8

Hunter J. and Jernvall J. 1995. The hypocone as a key innovation in mammalian evolution. Proceedings of the Natinal Academy of Sciences, 92: 10718–10722. https://doi.org/10.1073/pnas.92.23.10718

Hutterer R. 2005. Order Soricomorpha. In: D.E Wilson and D.A. Reeder (Eds.) Mammal species of the world: a taxonomical reference. 3rd edition. Vol. 1. Johns Hopkins University Press, Baltimore: 220–311.

Hutterer R., Balete D.S., Giarla T.C., Heaney L.R. and Esselstyn J.A. 2018. A new genus and species of shrew (Mammalia: Soricidae) from Palawan Island, Philippines. Journal of Mammalogy, 99: 518–536. https://doi.org/10.1093/jmammal/gyy041

ICZN. 2004. International Code of Zoological Nomenclature. Fourth Edition. KMK Scientific Press Ltd., Moscow, 223 p. [In Russian].

Jacquet F., Hutterer R., Nicolas V., Decher J., Colyn M., Couloux A. and Denys C. 2013. New status for two African giant forest shrews, Crocidura goliath goliath and C. goliath nimbasilvanus (Mammalia: Soricomorpha), based on molecular and geometic morphometric analyses. African Zoology, 48: 13–29. https://doi.org/10.1080/15627020.2013.11407565

Järvinen E., Salazar-Ciudad I., Birchmeier W., Taketo M.M., Jernvall J. and Thesleff I. 2006. Continuous tooth generation in mouse is induced by activated epithelial Wnt/β-catenin signaling. Proceedings of the National Academy of Sciences, 103: 18627–18632. https://doi.org/10.1073/pnas.0607289103

Jenkins P.D., Abramov A.V., Bannikova A.A. and Rozhnov V.V. 2013. Bones and genes: resolution problems in three Vietnamese species of Crocidura (Mammalia, Soricomorpha, Soricidae) and the discription of an additional new species. Zookeys, 313: 61–79. https://doi.org/10.3897/zookeys.313.4823

Jenkins P.D., Abramov A.V., Rozhnov V.V. and Makarova O.V. 2007. Description of two new species of white-toothed shrews belonging to the genus Crocidura (Soricomorpha: Soricidae) from Ngoc Linh Mountain, Vietnam. Zootaxa, 1589: 57–68. https://doi.org/10.11646/zootaxa.1589.1.5

Jenkins P.D., Abramov A.V., Rozhnov V.V. and Ollson A. 2010. A new species of Crocidura (Soricomorpha: Soricidae) from southern Vietnam and north-eastern Cambodia. Zootaxa, 2345: 60–68. https://doi.org/10.11646/zootaxa.2345.1.5

Jenkins P.D., Lunde D.P. and Moncrieff C.B. 2009. Descriptions of new species of Crocidura (Soricomorpha: Soricidae) from Mainland Southeast Asia, with synopses of previously described species and remarks on biogeography. Bulletin American Museum of Natural History, 331: 356–405. https://doi.org/10.3106/mammalstudy.29.27<

Jernvall J. 1995. Mammalian molar cusp patterns: Developmental mechanisms of diversity. Acta Zoologica Fennica. 198: 1–61.

Kamalakannan M., Sivaperuman C., Kundu S., Gokulakrishnan G., Vinkatraman C. and Chandra K. 2021. Discovery of a new mammal species (Soricidae: Eulipotyphla) from Narcondam volcanic island, India. Scientific Reports, 11: 9416. https://doi.org/10.1038/s41598-021-88859-4

Kavanagh K.D., Evans A.R. and Jernvall J. 2007. Predicting evolutionary patterns of mammalian teeth from development. Nature, 449: 427–432. https://doi.org/10.1038/nature06153

Kitching I.J., Forey P.L., Humphries C.J. and Williams D.M. 1998. Cladistics: The theory and practice of parsimony analysis (2nd edition). Oxford University Press, Oxford, 228 p.

Klietmann J., Nagel D., Rummel M. and van den Hoek Ostende L.W. 2013. Tiny teeth of consequence: vestigial antemolars provide key to Early Miocene soricid taxonomy (Eulipotyphla: Soricidae). Comptes Rendus Palevol, 12: 257–267. https://doi.org/10.1016/j.crpv.2013.05.008

Klietmann J., Nagel D., Rummel M. and van den Hoek Ostende L.W. 2014. Heterosorexand Soricidae (Eulipotyphla, Mammalia) of the fissure Petersbuch 28; microevolution as indicator of temporal mixing? Comptes Rendus Palevol, 13: 157–181. https://doi.org/10.1016/j.crpv.2013.10.001

Klingenberg C.P. 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11: 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x

Klingenberg C.P. and Gidaszewski N.A. 2010. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Systematic Biology, 59: 245–261. https://doi.org/10.1093/sysbio/syp106

Klingenberg C.P. and Leamy L.J. 2001. Quantitative genetics of geometric shape in the mouse mandible. Evolution, 55: 2342–2352. https://doi.org/10.1111/j.0014-3820.2001.tb00747.x

Konecný A., Hutterer R., Meheretu Y. and Bryja J. 2020. Two new species of Crocidura (Mammalia: Soricidae) from Ethiopia and updates on the Ethiopian shrew fauna. Journal of Vertebrate Biology, 69: 20064. https://doi.org/10.25225/jvb.20064

Kosintsev P., Mitchell K.J., Devièse T., van der Plicht J., Kuitems M. et al. 2018. Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions. Nature Ecology and Evolution, 3: 31–38. http://doi.org/10.1038/s41559-018-0722-0

Lavrenchenko L.A., Voyta L.L. and Hutterer R. 2016. Diversity of shrews in Ethiopia, with the description of two new species of Crocidura (Mammalia: Lipotyphla: Soricidae). Zootaxa, 4196: 38–60. https://doi.org/10.11646/zootaxa.4196.1.2

Lopatin A.B. 2002. The earliest shrew (Soricidae, Mammalia) from the Middle Eocene of Mongolia. Paleontological Journal, 36: 650–659. [In Russian].

Lopatin A.B. 2005. A new soricomorph insectivore (Soricomorpha, Mammalia) from the Eocene of Mongolia and the origin of shrews (Soricidae). Doklady Biological Sciences. 401: 144–146.

Lopatin A.V. 2006. Early Paleogene insectivore mammals of Asia and establishment of the major group of Insectivora. Paleontological Journal, 40: 205–405.

Matson J.O. and Ordóñez-Garza N. 2017. The taxonomic status of Long-tailed shrews (Mammalia: genus Sorex) from Nuclear Central America. Zootaxa, 4236: 461–483. https://doi.org/10.11646/zootaxa.4236.3.3

McKenna M.C. and Bell S.K. 1997. Classification of mammals above the species level. Columbia University Press, New York, 631 p.

McLellan L.J. 1994. Evolution and phylogenetic affinities of the African species of Crocidura, Suncus, and Sylvisorex (Insectivora: Soricidae). In: J.F. Merritt, G.L. Kirkland and R.K. Rose (Eds). Advances in the biology of shrews. Carnegie Museum of Natural History, Pittsburg: 379–391.

Meegaskumbura S., Meegaskumbura M., Pethiyagoda R., Manamendra-Arachchi K. and Schneider C.J. 2007. Crocidura hikmiya, a new shrew (Mammalia: Soricomorpha: Soricidae) from Sri Lanka. Zootaxa, 1665: 19–30. https://www.mapress.com/zt/article/view/zootaxa.1665.1.2

Meegaskumbura S. and Schneider C.J. 2008. A taxonomic evaluation of the shrew Suncus montanus (Soricidae: Crocidurinae) of Sri Lanka and India. Ceylon Journal of Science (Biological Sciences), 37: 129–136. https://doi.org/10.4038/CJSBS.V37I2.500

Mészáros L., Botka D. and Gasparik M. 2020. Establishing a neotype for Crocidura obtusa Kretzoi, 1938 (Mammalia, Soricidae): an emended description of this Pleistocene white toothed shrew species. Palaontologische Zeitschrift, 94: 367–375. https://doi.org/10.1007/s12542-019-00458-x

Ohdachi S.D., Hasegawa M., Iwasa M.A., Vogel P., Oshida T., Lin L.-K. and Abe H. 2006. Molecular phylogenetics of soricid shrews (Mammalia) based on mitochondrial cytochrome b gene sequences: with special reference to the Soricinae. Journal of Zoology, 270: 177–191. https://doi.org/10.1111/j.1469-7998.2006.00125.x

O’Higgins P. 2000. The study of morphological variation in the hominid fossil record: biology, landmarks and geometry. Journal of Anatomy, 197: 103–120. https://doi.org/10.1046/j.1469-7580.2000.19710103.x

O’Higgis P. and Jones N. 1998. Facial growth in Cercocebus torquatus: an application of three-dimensional geometric morphometric techniques to the study of morphological variation. Journal of Anatomy, 193: 251–272. https://doi.org/10.1046/j.1469-7580.1998.19320251.x

Polly P.D. 2003. Paleophylogeography of Sorex araneus (Insectivora, Soricidae): molar shape as a morphological marker for fossil shrews. Mammalia, 68: 233–243. https://doi.org/10.1515/mamm.2003.67.2.233

Polly P.D. and Mock O.B. 2017. Heritability: the link between development and the microevolution of molar tooth form. Historical Biology, 30: 53–63. https://doi.org/10.1080/08912963.2017.1337760

Polly P.D. and Wójcik J.M. 2019. Geometric morphometric tests for phenotipic divergence between chromosomal races. In: J.B. Searle, J. Zima and P.D. Polly (Eds). Shrews, Chromosomes and Speciation. Cambridge University Press, Cambridge: 336–364. https://doi.org/10.1017/9780511895531.011

Reumer J.W.F. 1984. Ruscinian and Early Pleistocene Soricidae (Insectivora, Mammalia) from Tegelen (The Netherlands) and Hungary. Scripta Geologica, 73: 1–173.

Reumer J.W.F. 1987. Redefinition of the Soricidae and the Heterosoricidae (Insectivora, Mammalia) with the description of the Crocidosoricinae, a new subfamily of Soricidae. Revue de Paléobiologie, 6: 89–192.

Reumer J.W.F. 1989. Speciation and evolution in the Soricidae (Mammalia: Insectivora) in relation with the paleoclimate. Revue suisse de Zoologie, 96: 81–90.

Reumer J.W.F. 1994. Phylogeny and distribution of the Crocidosoricinae (Mammalia: Soricidae). In: J.F. Merrit, G.L. Kirkland and R.K. Rose (Eds). Advances in the biology of shrews. Special Publication 18. Carnegie Museum of Natural History, Pittsburgh: 345–356.

Reumer J.W.F. 1998. A classification of fossil and recent shrews. In: J.M. Wójcik and M. Wolsan (Eds). Evolution of Shrews. Mammal Research Institute Polish Academy of Sciences, Białowieza: 5–22.

Rzebik-Kowalska B. 1998. Fossil history of shrews in Europe. In: J.M. Wójcik and M. Wolsan (Eds). Evolution of Shrews. Mammal Research Institute Polish Academy of Sciences, Białowieza: 23–92.

Sesé C. 1980. Mamíferos del Miocene Medio de Escobosa de Calatanazor. Universidad Complutense de Madrid, Madrid, 407 p.

Shchipanov N.A., Voyta L.L., Bobretsov A.V. and Kuprianova I.F. 2014. Intra-species structuring in the common shrew Sorex araneus (Lipotyphla: Soricidae) in European Russia: morphometric variability could give evidence of limitation interpopulation migrations. Russian Journal of Theriology, 13: 119–140. https://doi.org/10.15298/rusjtheriol.13.2.08

Sheftel B.I. 2018. Piebald Shrew Diplomesodon pulchellus. In: D.E. Wilson and A.M. Russell (Eds). Hand book of the mammals of the world. Vol. 8. Insectivores, sloths and colugos. Lynx Edicions, Barcelona: 472.

Sher A.A. 1999. Actualism and disconformism in the study of the ecology of Pleistocene mammals. Zhurnal Obshchei Biologii. 51: 163–177. [In Russian].

Simpson P.P. 1970. The Argyrolagidae, extinct South American marsupials. Bulletin of the Museum of Comparative Zoology at Harvard College, 139: 1–86.

Smith A.B. 1994. Systematics and the fossil records: Documenting evolutionary patterns. Blackwell Science Publications, Oxford and Boston (Massachusetts), 223 p.

Smith R. and van den Hoek Ostende L.W. 2006. A new heterosoricid shrew from the lowermost Oligocene of Europe. Acta Palaeontologica Polonica, 51: 381–384.

Stanley W.T., Robbins L.W., Malekani J.M., Mbalitini S.G., Migurimu D.A. et al. 2013. A new hero emerges: another exceptional mammalian spine and its potential adaptive significance. Biology Letters, 9: 1–5. https://doi.org/10.1098/rsbl.2013.0486

Storch G. and Qiu Z. 2004. First complete heterosoricine shrew: A new genus and species from the Miocene of China. Acta Palaeontologica Polonica, 49: 357–363.

Storch G. and Zazhigin V.S. 1996. Taxonomy and phylogeny of the Paranourosorex lineage, Neogene of Eurasia (Mammalia: Soricidae: Anourosoricini). Paläontologische Zeitschrift, 70: 257–268.

Storch G., Qiu Z. and Zazhigin V. 1998. Fossil history of shrews in Asia. In: J.M. Wójcik and M. Wolsan (Eds). Evolution of Shrews. Mammal Research Institute Polish Academy of Sciences, Białowieza: 93–120.

Upham N.S., Esselstyn J.A. and Jetz W. 2019. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biology, 17: e3000494. https://doi.org/10.1371/journal.pbio.3000494

Van Dam J.A. 2004. Anourosoricini (Mammalia: Soricidae) from the Mediterranean region: a pre-quaternary example of recurrent climate-controlled north-south range shifting. Journal of Paleontology, 78: 741–764. https://doi.org/10.1666/0022-3360(2004)078<0741:AMSFTM>2.0.CO;2

Van Dam J.A. 2010. The systematic position of Anourosoricini (Soricidae, Mammalia): paleontological and molecular evidence. Journal of Vertebrate Paleontology, 3 0: 1221–1228. https://doi.org/10.1080/02724634.2010.483553

Van Dam J.A., van den Hoek Ostende L.W. and Reumer J.W.F. 2011. A new short-snouted shrew from the Miocene of Spain. Geobios, 44: 299–307. https://doi.org/10.1016/j.geobios.2010.11.007

Van den Hoek Ostende L.W., López-Guerrero P., Peláez-Campomanes P., Álvarez-Sierra M.A. and García-Paredes I. 2012. Early Late Miocene insectivores (Eulipotyphla, Mammalia) from the Canada section (Province of Zaragoza, east Central Spain). Comptes Rendus Palevol, 11: 495–506. https://doi.org/10.1016/j.crpv.2012.06.003

Van der Valk T., Pecnerová P., Díez-del-Molino D., Bergström A., Oppenheimer J. et al. 2021. Million year-old DNA sheds light on the genomic history of mammoths. Nature, 591: 265–269. https://doi.org/10.1038/s41586-021-03224-9

Vasil’ev A.G., Vasil’eva I.A. and Shkurikhin A.O. 2018. Geometric morphometrics: from theory to practice. KMK Scientific Press, Moscow, 471 p.

Voyta L.L., Omelko V.E., Tiunov M.P., Petrova E.A., Kryuchkova and L.Yu. 2021b. Temporal variation in soricid dentition: Which are first – qualitative or quantitative features? Historical Biology, Available from: https://doi.org/10.1080/08912963.2021.1986040

Voyta L.L., Omelko V.E., Tiunov M.P. and Vinokurova M.V. 2021a. When beremendiin shrews disappeared in East Asia, or how we can estimate fossil redeposition. Historical Biology, 33(11): 2656–2667. https://doi.org/10.1080/08912963.2020.1822354

Wilson D.E. and Reeder A.M. (Eds). 2005. Mammal Species of the World. A taxonomic and geographic reference (3rd ed). Johns Hopkins University Press, Baltimore, 2142 p.

Woodman N. 2010. Two new species of shrews (Soricidae) from the western highlands of Guatemala. Journal of Mammalogy, 91: 566–579. http://doi.org/10.1644/09-MAMM-A-346.1

Yamanaka A., Yasui K., Sonomura T., Iwai H. and Uemura M. 2010. Development of deciduous and permanent dentitions in the upper jaw of the house shrew (Suncus murinus). Archives of Oral Biology, 55: 279–287. https://doi.org/10.1016/j.archoral-bio.2010.02.006

Yang L., Zhang H., Zhang C., Wu J., Wang Z., Li C. and Zhang B. 2020. A new species of the genus Crocidura (Mammalia: Eulipotyphla: Soricidae) from Mount Huang, China. Zoological Systematics, 45: 1–14. https://doi.org/10.11865/zs.202001

Yudin B.S. 1989. Insectivorous mammals of Siberia. Izdatelstvo Nauka, Sibirskoje Otdelenie, Novosibirsk, 360 p. [In Russian].

Zazhigin V.S. and Voyta L.L. 2018. A new middle Miocene crocidosoricine shrew from the Mongolian Shargain Gobi Desert. Acta Palaeontologica Polonica, 63: 171–187. https://doi.org/10.4202/app.00396.2017

Zelditch M.L., Swiderski D.L., Sheets H.D. and Fink W.L. 2004. Geometric Morphometrics for Biologists: A Primer. Elsevier Academic Press, London, 437 p.

Zhang H., Wu G.Y., Wu Y.Q., Yao J.F., You S., Wang C.C., Cheng F., Chen J.P., Tang M.X., Li C.L. and Zhang B.W. 2019. A new species of the genus Crocidura from China based on molecular and morphological data (Eulipotyphla: Soricidae). Zoological Systematics, 44: 279–293. https://doi.org/10.11865/zs.201927

Ziegler R. 1989. Heterosoricidae und Soricidae (Insectivora, Mammalia) aus dem Oberoligzän und Unterniozän Süddeutschlands. Stuttgarter Beiträge zur Naturkunde, 154: 1–73.

Ziegler R. 2006. Insectivores (Lipotyphla) and bats (Chiroptera) from the Late Miocene of Austria. Annalendes Natur historischen Museums in Wien, 107A: 93–196.

Ziegler R. 2009. Soricids (Soricidae, Mammalia) from Early Oligocene fissure fillings in South Germany – and a phylogenetic analysis of the Heterosoricinae. Palaeodiversity, 2: 321–342.

Ziegler R., Dahlmann T. and Storch G. 2007. Oligocene-Miocene vertebrates from the Valley of Lakes (Central Mongolia): morphology, phylogenetic and stratigraphic implications. 4. Marsupialia, Erinaceomorpha and Soricomorpha (Mammalia). Annalendes Naturhistorischen Museums in Wien, 108A: 53–164.

 

© Zoological Institute of the Russian Academy of Sciences
Last modified: March 25, 2025