The relationship between fish length and otolith size and weight of the two nearly threatened siluriformes species Ailia coila (Ailiidae) and Ompok pabda (Siluridae) collected from the Ganga River at Narora, India

Salman Khan, L.A. Jawad, M.A. Khan and A. Ankita

Proceedings of the Zoological Institute RAS, 2022, 326(2): 78–85   ·   https://doi.org/10.31610/trudyzin/2022.326.2.78

Full text  

Abstract

Relationships between fish length and otolith length, width and mass were investigated in the two nearly threatened silurid species (Siluriformes) Ailia coila (Hamilton, 1822) and Ompok pabda Hamilton, 1822) collected from the Ganga River at Narora, India. The relationships between otolith length (OL) and fish total length (TL), otolith width (OWd) and TL, and otolith weight (OWe) and TL are expressed by linear regression models; for A. coila, OL = 0.0291 TL + 0.8541, OWd = 0.0306 TL + 0.2241, OWe = 0.0246 TL + 0.8595, and for O. pabda, OL=0.0643 TL + 1.3848, OWd = 0.0377 TL + 0.7358, OWe = 0.0461 TL + 0.6761. This study symbolizes the first reference available on the relationship of fish size and otolith size and weight for A. coila and O. pabda in the Ganga River at Narora, India. The data obtained are useful for studying the feeding ecology of these fish, whose numbers are declining due to overfishing.

Key words

Ailia coila, Ganga River, India, linear regression, Ompok pabda, otolith morphometrics, Siluriformes

Submitted March 15, 2022  ·  Accepted April 24, 2022  ·  Published June 25, 2022

References

Afsar M. 1990. Food and feeding habits of a teleostean fish Clupisoma garua (Ham.) in the Ganga river system. Journal of Freshwater Biology, 2: 159–167.

Alam J., Andriyono S., Hossain A., Eunus A.T.M. and Kim H.W. 2019a. The complete mitochondrial genome of a Pabdah catfish, Ompok pabda (Hamilton, 1822). Mitochondrial DNA Part B, 4(1): 507–508. https://doi.org/10.1080/23802359.2018.1551079

Alam M.J., Andriyono S., Lee S.R., Hossain M.A., Eunus A.T.M., Hassan M.T. and Kim H.W. 2019b. Characterization of the complete mitochondrial genome of Gangetic ailia, Ailia coila (Siluriformes: Ailiidae). Mitochondrial DNA Part B, 4: 2258–2259. https://doi.org/10.1080/23802359.2019.1627942

Anita G. 2019. Size structure and exploitation pattern of Ailia coila (Hamilton, 1822) from the Ganga River at Allahabad, India. Journal of Experimental Zoology, India, 22: 1263–1266.

Assis C.A. 2005. The utricular otoliths, lapilli, of teleosts: their morphology and relevance for species identification and systematics studies. Scientia Marina, 69: 259–273. https://doi.org/10.3989/scimar.2005.69n2259

Aydin R., Calta M., Sen D. and Coban M. Z. 2004. Relationships between fish lengths and otolith length in the population of Chondrostoma regium (Heckel, 1843) inhabiting Keban Dam Lake. Pakistan Journal of Biological Science, 7: 1550–1553. https://doi.org/10.3923/pjbs.2004.1550.1553

Banik S. and Bhattacharya P. 2012. Ompok pabo (Hamilton, 1822) of Tripura, India: an endangered fish species in relation to some biological parameters. Research Journal of Biology, 2: 91–97.

Banik S. and Malla S. 2015. December. Survival and growth rate of larval Ompok pabda (Hamilton-Buchanan, 1822) of Tripura, India: Related to efficient feed. Proceedings of the Zoological Society, 68: 164–171. https://doi.org/10.1007/s12595-014-0111-x

Battaglia P., Malara D., Romeo T. and Andaloro F. 2010. Relationships between otolith size and fish size in some mesopelagic and bathypelagic species from the Mediterranean Sea (Strait of Messina, Italy). Scientia Marina, 74: 605–612. https://doi.org/10.3989/scimar.2010.74n3605

Bostancı D., Yedier S., Kontas S., Kurucu G. and Polat N. 2017. Regional variation of relationship between total length and otolith sizes in the three Atherina boyeri Risso, 1810 populations, Turkey. Ege Journal of Fisheries and Aquatic Sciences, 34: 11–16. https://doi.org/10.12714/egejfas.2017.34.1.02

Bhutia R.N., Sri Hari M., Srinivasan N.T., Deshmukhe G., Ramteke K., Bhushan S. and Landge A.T. 2019. Stock structure of small indigenous and near threatened Ailia coila (Hamilton, 1822) from Ganga and Brahmaputra river systems. Journal of Entomology and zoology Studies, 7: 1600–1605.

Bhuyian A.L. 1964. Fishes of Dacca. Asiatic Society of Pakistan, Publ. No. 13, Dacca, 148 p.

Campana S.E. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms, and applications. Marine Ecology Progress Series, 188: 263–297. https://doi.org/10.3354/meps188263

Campana S.E. 2004. Photographic atlas of fish otoliths of the Northwest Atlantic Ocean. Ottawa, Ontario, NRC Research Press, 284 p. https://doi.org/10.1139/9780660191089

Campana S.E., Ampana S.E. and Casselman J.M. 1993. Stock discrimination using otolith shape analysis. Canadian Journal of Fisheries and Aquatic Science, 50: 1062–1083. https://doi.org/10.1139/f93-123

Chaklade M.R., Siddik M.A.B., Hanif M.A., Naha A., Mahmud S. and Piria M. 2016. Morphometric and meristic variation of endangered pabda catfish, Ompok pabda (Hamilton-Buchanan, 1822) from southern coastal waters of Bangladesh. Pakistan Journal of Zoology, 48: 681–687.

Chakrabarti P.P., Chakrabarty N.M. and Mondal S.C. 2009. Breeding and seed production of butter catfish, Ompok pabda (Siluridae) at Kalyani Centre of CIFA, India. Research Farming Technology, 1: 33–35.

Diogo R. 2005. Morphological evolution, adaptations, homoplasy, constraints, and evolutionary trends: catfishes as a case study on general phylogeny and macroevolution. Science Publishers, New Hampshire (Enfield, US), 491 p.

Echeveria T.W. 1987. Relationship of otolith length to total length in rockfishes from northern and central California. Fisheries Bulletin, 85: 383–387.

Froese R. and Pauly D. Editors. 2022. Fish Base. World Wide Web electronic publication. Available from: www.fishbase.org (accessed 20 March 2022).

Gauldie R.W. 1993. Polymorphic crystalline structure of fish otoliths. Journal of Morphology, 218: 1–28. https://doi.org/10.1002/jmor.1052180102

Gogoi P., Ahirwal S.K., Chakraborty S.K., Bhattacharjya B.K., Jaiswar A.K., Singh J. and Behera P.R. 2021. Investigations on age, growth and mortality parameters of Ailia coila (Hamilton, 1822) (Siluriformes: Ailiidae) from Brahmaputra river system of Assam, India. Indian Journal of Fisheries, 68: 8–14. https://doi.org/10.21077/ijf.2021.68.2.102154-02

Granadeiro J.P. and Silva M.A. 2000. The use of otoliths and vertebrae in the identification and size-estimation of fish in predator-prey studies. Cybium, 24: 383–393.

Gupta B.K., Sarka U.K. and Bhardwaj S.K. 2014. Reproductive biology of Indian Silurid catfish Ompok pabda in river Gomti. Journal of Environmental Biology, 35: 345.

Harvey J.T., Loughlin T.R., Perez M.A. and Oxman D.S. 2000. Relationship between fish size and otolith length for 63 species of fishes from the eastern North Pacific Ocean. NOAA Technical Report NMFS, 150: 35 p.

Jawad L.A. and Al-Mamry J. 2012. Relationship between fish length and otolith dimensions in the carangid fish (Carangoides coeruleopinnatus (Ruppell, 1830)) collected from the Sea of Oman. Journal of Fisheries Sciences.com, 6: 203–208. https://doi.org/10.3153/jfscom.2012023

Jawad L.A. and Adams N.J. 2021. The relationship between fish length and otolith size and weight of the Australian anchovy, Engraulis australis (Clupeiformes, Engraulidae), retrieved from the food of the Australasian gannet, Morus serrator (Suliformes, Sulidae), Hauraki Gulf, New Zealand. Zoodiversity, 55: 331–338. https://doi.org/10.15407/zoo2021.04.331

Jawad L.A. and Al-Mamry J. and Al-Busaidi H. 2011a. Relationship between fish length and otolith length and width in the lutjanid fish, Lutjanus bengalensis (Lutjanidae) collected from Muscat City coast on the Sea of Oman. Journal of Black Sea/Mediterranean Environment, 17: 116–126.

Jawad L.A., Al-Mamry J., Al-Mamari H.M., Al-Yarubi M.M., Al-Mamary D.S. and Al-Busaidi H.K. 2011b. Relationships between fish length and otolith length, width and weight of Rhynchorhamphus georgi (Valenciennes, 1846) (Family: Hemiramphidae) collected from Oman Sea. Romanian Journal of Biology, 56: 189–200.

Jawad L.A., Ambuali A., Al-Mamry J. and Al-Busaidi H.K. 2011c. Relationships between fish length and otolith length, width and weight of the Indian mackerel Rastrelliger kanagurta (Cuvier, 1817) collected from the Sea of Oman. Ribarstvo, 69: 51–61.

Jobling M. and Breiby A. 1986. The use and abuse of fish otoliths in the studies of feeding habits of marine piscivores. Sarsia, 71: 265–274. https://doi.org/10.1080/00364827.1986.10419696

Jones W.A. and Morales M.M. 2014. Catalog of otoliths of select fishes from the California current system. Scripps Institute of Oceanography, La Jolla, CA, 16 p.

Kontas S. and Bostancı D. 2015. Morphological and biometrical characteristics on otolith of Barbus tauricus Kessler, 1877 on light and scanning electron microscope. International Journal of Morphology, 33: 1380–1385. https://doi.org/10.4067/S0717-95022015000400032

Lombarte A., Chic Т., Parisi-baradad V., Olivellal R., Piera J. and Garcíaladona E. 2006. A web-based environment from shape analysis of fish otoliths. The AFORO database (http://www.Cmima.csic.es/aforo/). Scientia Marina, 70: 147–152. https://doi.org/10.3989/scimar.2006.70n1147

Mehanna S.F., Jawad L.A., Ahmed Y.A., Abu El-Regal M.A. and Dawood D. 2016. Relationships between fish size and otolith measurements for Chlorurus sordidus (Forsskal, 1775) and Hipposcarus harid (Forsskal, 1775) from the Red Sea coast of Egypt. Journal of Applied Ichthyology, 32: 356–358. https://doi.org/10.1111/jai.12995

Morat F., Banaru D., Merigot B., Batjakas J.E., Betoulle S., Vignon M., Leconte-Finiger R. and Letourneur Y. 2008. Relationships between fish length and otolith length for nine teleost fish species from the Mediterranean basin Kerguelen Islands and Pacific Ocean. Cybium, 32: 265–269.

Mukhopadhyay T. and Ghosh S. 2007. Lipid profile and fatty acid composition of two silurid fish eggs. Journal of Oleo Science, 56: 399–403. https://doi.org/10.5650/jos.56.399

Ng H.H. and Dahanuka N. 2011. Ailia coila. The IUCN Red List of Threatened Species 2011: e.T166451A6212182. https://www.iucnredlist.org/species/166451/6212182 (accessed 22 February 2022).

Nolf D. 1995. Studies on fossil otoliths – the state of the art. In: D.H. Secor, J.M. Dean and S.E. Campana (Eds). Recent developments in fish otolith research. University of South Carolina Press, Columbia, SC: 513–544.

Park J.M., Gaston T.F and Williamson J.E. 2017. Resource partitioning in gurnard species using trophic analyses: The importance of temporal resolution. Fisheries Research, 186: 301–310. https://doi.org/10.1016/j.fishres.2016.10.005

Panfili J., Pontual H., Troadec H. and Wright P.J. (Eds). 2002. Manual of fish schlerochronology. Ifremer-IRD coedition, Brest, France, 464 p.

Pracheil B.M., George R. and Chakoumakos B.C. 2019. Significance of otolith calcium carbonate crystal structure diversity to microchemistry studies. Reviews in Fish Biology and Fisheries, 29: 569–588. https://doi.org/10.1007/s11160-019-09561-3

Qasim A.M., Jawad L.A. and Abdullah A.H.J. 2019. Fish length-otolith size and weight relationships of the Otolithes ruber (Bloch et Schneider, 1801) collected from the marine waters of Iraq, Persian Gulf. Cahier de Biologia Marine, 60: 439–443.

Reichenbacher B., Kamrani E., Esmaeili H.R. and Teimori A. 2009. The endangered cyprinodont Aphanius ginaonis (Holly, 1929) from southern Iran is a valid species: evidence from otolith morphology. Environmental Biology of Fishes, 86: 507–521. https://doi.org/10.1007/s10641-009-9549-5

Sadigzadeh Z. and Tuset V.T. 2012. Otolith atlas from the Persian Gulf and the Oman sea fishes. LAP Lambert Academic Publishing: Saarbrucken, 1–58.

Schulz-Mirbach T., Ladic F., Plath M. and Heß M. 2018. Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths. Biological Reviews, 94: 457–482. https://doi.org/10.1111/brv.12463

Talwar P.K. and Jhingran A.G. (Eds). 1991. Inland fishes of India and adjacent countries. Vol. 2. Rotterdam, A.A. Balkema, 519 p.

Tenzin K. and Ng H.H. 2010. Ompok pabda (errata version published in 2020). The IUCN Red List of Threatened Species, 2010: e.T166509A174786344. https://www.iucnredlist.org/species/166509/174786344 (accessed 14 March 2022).

Thomas O.R. and Swearer S.E. 2019. Otolith biochemistry, a review. Reviews in Fisheries Science and Aquaculture, 27: 458–489. https://doi.org/10.1080/23308249.2019.1627285

Tuset V.M., Lombarte A. and Assis C.A. 2008. Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina, 72 (suppl. 1): 7–198. https://doi.org/10.3989/scimar.2008.72s17

Waessel J.A., Lasta C.A. and Bavero M. 2003. Otolith morphology and body size relationships for juvenile Sciaenidae in the Rio de la Plata estuary (35–36°S). Scientia Marina, 67: 233–240. https://doi.org/10.3989/scimar.2003.67n2233

Yilmaz S., Yazicioğlu O., Yazici R. and Polat N. 2015. Relationships between fish length and otolith size for five cyprinid species from Lake Ladik, Samsun, Turkey. Turkish Journal of Zoology, 39: 438–446. https://doi.org/10.3906/zoo-1403-58

Yonezaki S., Kiyota M., Baba N., Koido T. and Takemura A. 2011. Prey size reconstruction based on myctophid otoliths in scats of northern fur seals (Callorhinus ursinus). Mammal Study, 36: 159–163. https://doi.org/10.3106/041.036.0307

Zan X.X., Zhang C., Xu B.-D. and Zhang C.-L. 2015. Relationships between fish size and otolith measurements for 33 fish species caught by bottom trawl in Haizhou Bay, China. Journal of Applied Ichthyology, 31: 544–548. https://doi.org/10.1111/jai.12751

 

© Zoological Institute of the Russian Academy of Sciences
Last modified: March 25, 2025