Factors of macrozoobenthos formation in low-mountain lakes of the Russian AltaiProceedings of the Zoological Institute RAS, 2024, 328(2): 268–284 · https://doi.org/10.31610/trudyzin/2024.328.2.268 Abstract The current state of macrozoobenthos of six low-mountain lakes of the Russian Altai was studied in different hydrological seasons (May, July, September) 2022: Aya (Aiskoe), Beloe, Kireevo, Kolyvanskoe, Koksha, and Svetloe. The aim of the article is to study the factors of formation of benthic invertebrate communities of foothill lakes of the Russian Altai. In total 156 species from 9 classes of invertebrates were identified in the zoobenthos of the studied lakes, the highest percentage of occurrence was recorded for chironomids and oligochaetes. According to the taxonomic composition of macrozoobenthos, most of the studied lakes of the Russian Altai (Aya, Beloe, Kireevo and Kolyvanskoe) were close to flatland lakes. Two lakes (Koksha and Svetloe) combined characteristics of both flatland and highland lakes. The abundance and biomass of zoobenthos in lakes Aya and Kireevo corresponded to the oligotrophic level, in lakes Beloe and Kolyvanskoe to the mesotrophic level, and in lakes Koksha and Svetloye to the eutrophic level. The structural characteristics of macroinvertebrates are indicators of the state of lake ecosystems. Therefore, in order to maintain the health of lake ecosystems, it is important to determine the limiting factors for macroinvertebrate community composition and structure. The influence of environmental factors on the composition and structure of macrozoobenthos of foothill lakes of the Russian Altai was studied. The relationship of 10 main indicators of zoobenthos structure with 30 hydro physical and hydrochemical indicators was analyzed. Using principal component analysis, multiple regression method, correlation and canonical analyses, it was revealed that the greatest influence on the development of benthic invertebrate communities in the studied lakes of the Russian Altai was exerted by nutrients, permanganate oxidability and soil character and water temperature. Key words mountain lakes, benthic invertebrates, environmental factors
Submitted March 4, 2023 · Accepted April 3, 2024 · Published June 24, 2024 References Abakumov V.A. (Ed.) 1992. Guidelines for hydrobiological monitoring of freshwater ecosystems. Hydrometeoizdat, Saint Petersburg, 317 p. [In Russian]. Alekin O.A. 1953. Fundamentals of hydrochemistry. Gidrometeoizdat, Leningrad, 109 p. [In Russian]. Allen D.C. and Vaughn C.C. 2010. Complex hydraulic and substrate variables limit freshwater mussel species richness and abundance. Journal of the North American Benthological Society, 29: 383–394. https://doi.org/10.1899/09-024.1 Bazzanti M., Della Bella V. and Grezzi F. 2009. Functional characteristics of macroinvertebrate communities in Mediterranean ponds (Central Italy): Influence of water permanence and mesohabitat type. Annales de Limnologie-International Journal of Limnology, 45(1): 29–39. https://doi.org/10.1051/limn/09005 Bezmaternykh D.M. and Vdovina O.N. 2020. Composition and structure of macrozoobenthos of lakes in different natural zones and subzones of Western Siberia. Limnology, 21(1): 3–13. https://doi.org/10.1007/s10201-019-00586-y Bezmaternykh D.M. and Zhukova O.N. 2013. Composition, structure and factors of formation of communities of benthic invertebrates in lakes of the South of the Ob-Irtysh interfluve. Russian Journal of Ecology, 44(2): 170–177. https://doi.org/10.1134/S1067413613020057 Boeva L.V. (Ed.) 2009. Manual on chemical analysis of surface waters of the land. Part 1. Southern Federal University Publ., Rostov-on-Don, 1150 p. [In Russian]. Boeva L.V. (Ed.) 2012. Manual on chemical analysis of surface waters of the land. Part 2. Southern Federal University Publ., Rostov-on-Don, 720 p. [In Russian]. Çamur-Elipek B., Arslan N., Kirgiz T., Öterler B., Güher H. and Özkan N. 2010. Analysis of Benthic Macroinvertebrates in Relation to Environmental Variables of Lake Gala, a National Park of Turkey Turkish. Journal of Fisheries and Aquatic Sciences, 10: 235–243. https://doi.org/10.4194/trjfas.2010.0212 Cai Y.J., Lu Y.J., Wu Z.S., Chen Y.W., Zhang L. and Lu Y. 2014. Community structure and decadal changes in macrozoobenthic assemblages in Lake Poyang, the largest freshwater lake in China. Knowledge and Management of Aquatic Ecosystems, 414(9). https://doi.org/10.1051/kmae/2014021 Carcamo R.J., Contador T., Gañan M., Troncoso P.C., Marquez M.A., Convey P., Kennedy J. and Rozzi R. 2019. Altitudinal gradients in Magellanic sub-Antarctic lagoons: the effect of elevation on freshwater macroinvertebrate diversity and distribution. PeerJ, 7: e7128. https://doi.org/10.7717/peerj.7128 Chekanovskaya O.W. 1962. Aquatic small bristle worms of the USSR. Izd. Akademii nauk USSR, Moscow, Leningrad, 416 p. [In Russian]. Compton T.J., Holthuijsen S., Koolhaas A., Dekinga A., Ten Horn J. and Smith J. 2013. Distinctly variable mudscapes: Distribution gradients of intertidal macrofauna acrossthe Dutch Wadden Sea. Journal of Sea Research, 82: 103–116. https://doi.org/10.1016/j.seares.2013.02.002 Dalu T., Clegg B. and Nhiwatiwa T. 2012. Macroinvertebrate communities associated with littoral zone habitats and the influence of environmental factors in Malilangwe Reservoir, Zimbabwe. Knowledge and Management of Aquatic Ecosystem, 406: 1–15. https://doi.org/10.1051/kmae/2012023 Dalu T. and Chauke R. 2020. Assessing macroinvertebrate communities in relation to environmental variables: the case of Sambandou wetlands, Vhembe Biosphere Reserve. Applied Water Science, 10: 16. https://doi.org/10.1007/s13201-019-1103-9 Datry T., Larned S. and Scarsbrook M.R. 2007. Responses of hyporheic invertebrate assemblages to largescale variation in flow permanence and surface-subsurface exchange. Freshwater Biology, 52: 1452–1462. https://doi.org/10.1111/j.1365-2427.2007.01775.x Davidson T.A., Mackay A.W., Wolski P., Mazebedi R., Murray-Hudson M. and Todd M. 2012. Seasonal and spatial hydrological variability drives aquatic biodiversity in a flood-pulsed, sub-tropical wetland. Freshwater Biology, 57: 1253–1265. https://doi.org/10.1111/j.1365-2427.2012.02795.x Dou Q., Du X., Cong Y., Wang L., Zhao Ch., Song D., Liu H. and Huo T. 2021. Influence of environmental variables on macroinvertebrate community structure in Lianhuan Lake. Ecology and Evolution, 12: e8553. https://doi.org/10.1002/ece3.8553 Duka S., Pepa B., Keci E., Paparisto A. and Lazo P. 2017. Biomonitoring of water quality of the Osumi, Devolli, and Shkumbini rivers through benthic macroinvertebrates and chemical parameters. Journal of Environmental Science and Health. Part A., 52(5): 471–478. https://doi.org/10.1080/10934529.2016.1274167 Fenoglio S., Bo T., Pessino M. and Malacarne G. 2007. Feeding of Perla grandis nymphs (Plecoptera: Perlidae) in an Apennine first order stream (Rio Berga, NW Italy). Annales de la Société entomologique de France, 43: 21–224. https://doi.org/10.1080/00379271.2007.10697514 Foto Menbohan S., Mboye B.R., Mbega J.D. and Ajeagah G.A. 2017. Santé écologique de quelques cours d’eau du bassin hydrographique de la Mabounié au Gabon: Essai de typologie par les variables physicochimiques et hydromorphologiques. European Journal of Scientific Research, 148(1): 93–105. Free G., Solimini A.G., Rossaro B., Marziali L., Giacchini R., Paracchini B., Ghiani M., Vaccaro S., Gawlik B.M., Fresner R., Santner G., Schönhuber M. and Cardoso A.C. 2009. Modelling lake macroinvertebrate species in the shallow sublittoral: Relative roles of habitat, lake morphology, aquatic chemistry and sediment composition. Hydrobiologia, 633(1): 123–136. https://doi.org/10.1007/s10750-009-9869-7 Fureder L., Ettinger R., Boggero A., Thaler B. and Thies H. 2006. Macroinvertebrate diversity in alpine lakes: effects of altitude and catchment properties. Hydrobiologia, 562: 123–144. https://doi.org/10.1007/s10750-005-1808-7 Galakhov V.P. and Gubarev M.S. 2018. Water balance of lake Svetloe (Lebedinoe). Bulletin AB RGS, 3(50): 10–16. [In Russian]. Giller P.S. and Malmqvist B. 2002. The Biology of Streams and Rivers. Oxford University Press, Oxford, 296 p. Goodall D.W. 1954. Objective methods for the classification of vegetation. III. An essay in the use of factor analysis. Australian Journal of Botany, 2: 304–324. https://doi.org/10.1071/BT9540304 Gundrizer A.N., Ioganzen B.G., Kafanova V.V. and Petlina A.P. 1982. Ichthyology and hydrobiology in Western Siberia. TGU, Tomsk, 318 p. [In Russian]. Haidekker A. and Hering D. 2008. Relationship between benthic insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: A multivariate study. Aquatic Ecology, 42(3): 463–481. https://doi.org/10.1007/s10452-007-9097-z Hammer Ø., Harper D. and Ryan P.D. 2001. Past: Paleontological statistics software package for educationand data analysis. Palaeontologia Electronica, 4(1): 1–9. Havens K.E., Pinto-Coelho R.M., Beklioğlu M., Christofersen K.S., Jeppesen E., Lauridsen T.L. and Erdoğan Ş. 2014. Temperature effects on body size of freshwater crustacean zooplankton from Greenland to the tropics. Hydrobiologia, 743(1): 27–35. https://doi.org/10.1007/s10750-014-2000-8 Ioganzen B.G. 1982. Hydrobiological studies in Siberia. In: C.A. Studenetsky (Ed.). History of regional studies of the biological resources of the hydrosphere and their use. Nauka, Moscow: 169–195. [In Russian]. Ivicheva K.N. 2019. Zoobenthos of the Upper Sukhona tributary basins influenced by anthropogenic impact. MS thesis. St. Petersburg, 142 p. [In Russian]. Jongman R.G.G., Ter Braak S.J.F. and Van Tongeren O.F.R. 1999. Data analysis in community and landscape ecology. Moscow: RASKHN, 306 p. [In Russian]. Johnson P.D. and Brown K.M. 2000. The importance of microhabitat factors and habitat stability to the threatened Louisiana pearl shell, Margaritifera hembeli (Conrad). Canadian Journal of Zoology, 78: 271–277. https://doi.org/10.1139/z99-196 Key to freshwater invertebrates of Russia and adjacent lands. 1992–2004. Vol. 1–6. Zoological institute of RAS, St. Petersburg. [In Russian]. Klonowska-Olejnik M. and Skalski T. 2014. The effect of environmental factors on the mayfly communities of headwater streams in the Pieniny Mountains (West Carpathians). Biologia, 69(4): 498–507. https://doi.org/10.2478/s11756-014-0334-3 Kitaev S.P. 2007. Fundamentals of limnology for hydrobiologists and ichthyologists. KSC RAS, Petrozavodsk, 395 p. [In Russian]. Koveshnikov M.I. 2014. Zoobenthos of water bodies of the Biya river basin. LAP LAMBERT Academic Publishing, Saarbrücken, 278 p. [In Russian]. Krajenbrink H., White J., Dunbar M. and Wood P. 2021. Macroinvertebrate and diatom community responses to thermal alterations below water supply reservoirs. River Research Applicaion, 38: 595–612. https://doi.org/10.1002/rra.3922 Kurina E.M. 2016. Diversity, dynamics of distribution and structure of communities of benthic alien species in Saratov reservoir. Russian Journal of Biological Invasions, 4: 69–84. [In Russian]. https://doi.org/10.1134/S2075111717010076 Lakew A. and Moog O. 2015. A multimetric index based on benthic macroinvertebrates for assessing the ecological status of streams and rivers in central and southeast highlands of Ethiopia. Hydrobiologia, 751(1): 229–242. https://doi.org/10.1007/s10750-015-2189-1 Lepneva S.G. 1933. The bottom fauna of mountain lakes in the basin of Lake Teletskoye. In: G.Y. Vereshchagin (Ed.). Studies of Lakes of the USSR. Leningrad: 135–168. [In Russian]. Li F., Cai Q., Jiang W. and Qu X. 2012. Macroinvertebrate relationships with water temperature and water flow in subtropical monsoon streams of Central China: Implications for climate change. Fundamental and Applied Limnology, 180(3): 221–231. https://doi.org/10.1127/1863-9135/2012/0220 Li K., Liu X., Zhou Y., Xu Y., Lv Q., Ouyang S., Ouyang S. and Wu X. 2019. Temporal and spatial changes in macrozoobenthos diversity in Poyang Lake Basin, China. Ecology and Evolution, 9(2): 6353–6365. https://doi.org/10.1002/ECE3.5207 Li S., Yang W., Wang L., Chen K., Xu S. and Wang B. 2018. Influences of environmental factors on macroinvertebrate assemblages: Differences between mountain and lowland ecoregions, Wei River, China. Environmental Monitoring and Assessment, 190(3): 1–13. https://doi.org/10.1007/s10661-018-6516-7 Liu C., Xu Q., Wang Z., Jiang X., Ding G., Ren Q., Song J. and Liu M. 2023. Community structure of benthic molluscs shaped by environmental and ecological variables in the coastal waters of Changle, Fujian Province, China. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1045393 Litvinov A.S., Bakanov A.I., Zakonov V.V. and Kochetkova M.Yu. 2004. On the relationship between benthic communities indicators and some characteristics of their habitat. Water Resources, 31(5): 611–618. [In Russian]. https://doi.org/10.1023/B:WARE.0000041925.18591.3d Matias M.G., Arenas F., Rubal M. and Pinto I.S. 2015. Macroalgal Composition Determines the Structure of Benthic Assemblages Colonizing Fragmented Habitats. PLOS One, 10: e0142289. https://doi.org/10.1371/journal.pone.0142289 Mboye B.R., Foto Menbohan S., Mbega J.D. and Birama Ngon E.B. 2018. Influence of the Granulometric parameters on the Diversity and Distribution of Benthic Macroinvertebrates in the Mabounié Watershed (Central West Gabon). International Journal of Advansed Research in Biological Sciences, 5(7): 252–270. https://doi.org/10.22192/ijarbs.2018.05.07.020 Miserendino L.M. and Pizzolon L.A. 2000. Macroinvertebrates of a fluvial system in Patagonia: altitudinal zonation and functional structure. Archiv für Hydrobiologie, 150: 55–83. https://doi.org/10.1127/archiv-hydrobiol/150/2000/55 Mikhailov R.A. 2022. Mollusk of the Family Bithyniidae (Gastropoda, Littorinimorpha) of the Lower Volga Plains River. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 24(5): 88–96. [In Russian]. https://doi.org/10.37313/1990-5378-2022-24-5-88-96 Negishi J.N., Sagawa S., Kayaba Y., Sanada S., Kume M. and Miyashita T. 2012. Mussel responses to flood pulse frequency: the importance of local habitat. Freshwater Biology, 57: 1500–1511. https://doi.org/10.1111/j.1365-2427.2012.02803.x Nhiwatiwa T., Dalu T. and Sithole T. 2017. Assessment of river quality in a subtropical Austral river system: a combined approach using benthic diatoms and macroinvertebrates. Applied Water Science, 228: 428. https://doi.org/10.1007/s13201-017-0599-0 Pander J., Habersetzer L., Casas-Mulet R. and Geist J. 2022. Effects of Stream Thermal Variability on Macroinvertebrate Community: Emphasis on Native Versus Non-Native Gammarid Species. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.869396 Rusanov G.G. and Vazhov S.V. 2017. Unresolved problems of lakes Manzherokskoe and Aya. V.M. Shukshin State Pedagogical University, Biysk, 168 p. [In Russian]. Russian State Standard (GOST) 12536-2014. 2014. Soils. Methods of laboratory determination of granulometric (grain) and microaggregate composition. [In Russian]. Russian State Standard (GOST) R 59054-2020. 2020. Environmental protection. Surface and underground waters. Classification of water bodies. [In Russian]. Rychkov V.M. and Rychkova S.I. 2004. Phenomenon of the Koksha River in Altai. Natural resources of Gorny Altai, 2. Available from: http://altay-geojournals.ru/wp-content/uploads/2015/02/2-20.pdf (accessed 24 May 2023). Scheibler E.E., Claps M.C. and Roig S.A. 2014. Temporal and altitudinal variations in benthic macroinvertebrate assemblages in an Andean river basin of Argentina. Journal of Limnology, 73: 76–92. https://doi.org/10.4081/jlimnol.2014.789 Shannon C.E. 1963. The mathematical theory of communication. Urbana, 117 p. Shitikov B.K., Zinchenko T.D. and Abrosimova E.V. 2012. Statistical Analysis of the Results of Multivariate Ordination as Exemplified by Data on River Benthic Communities. Russian Journal of Ecology, 43(2): 118–122. https://doi.org/10.1134/S1067413612010146 Shostell J.M. and Williams B.S. 2007. Habitat complexity as a determinate of benthic macroinvertebrate community structure in cypress tree reservoirs. Hydrobiologia, 575(1): 389–399. https://doi.org/10.1007/s10750-006-0385-8 Soviet State Standard (GOST) 17.1.4.02-90. The method of spectrophotometric determination of chlorophyll “a”. [In Russian]. Tolonen K.T., Hamalainen H., Holopainen I.J. and Karjalainen J. 2001. Influences of habitat type and environmental variables on littoral macroinvertebrate communities in a large lake system. Archiv für Hydrobiologie, 152: 39–67. https://doi.org/10.1127/archiv-hydrobiol/152/2001/39 Tsalolikhin S.Ya. and Alekseev V.R. (Eds) 2016. Key of zooplankton and zoobenthos of fresh waters of European Russia. V. 2. Zoobenthos. Moscow, St. Petersburg, 457 p. Vdovina O.N., Yanygina L.V. and Bezmaternykh D.M. 2022. Composition and structure of lake macroinvertebrate communities in different altitudinal zones of Russian Altai. Acta Biologica Sibirica, 8: 531–555. https://doi.org/10.5281/zenodo.7714667 Vershinin V.K., Konovalova O.S. and Fomenko L.A. 1979. Zoobenthos of some Altai reservoirs and its role in the introduced peled’ nutrition. Proceedings of the Conference: Biological resources of the Altai territory and ways of their rational use (1–30 July 1979, Barnaul). Barnaul: 123–124. [In Russian]. Vinogradov G.A., Berezina N.A., Lapteva N.A. and Zharikov G.P. 2002. Use of structural indicators of bacterio- and zoobenthos in assessing bottom sediments quality (by the example of the reservoirs of the Upper Volga basin). Water Resources, 29(3): 329–336. [In Russian]. https://doi.org/10.1023/A:1015680329937 Ward J.V. 1992. Aquatic insect Ecology. Vol. 1. Biology and habitat. John Willey & Sons. Inc, New-York, 438 p. Weatherhead M.A. and James M.R. 2001. Distribution of macroinvertebrates in relation to physical and biological variables in the littoral zone of nine New Zealand lakes. Hydrobiologia, 462: 115–129. https://doi.org/10.1023/A:1013178016080 White J., Hannah D., House A., Beatson S., Martin A. and Wood P. 2016. Macroinvertebrate responses to flow and stream temperature variability across regulated and non-regulated rivers. Ecohydrology, 10(1): 1–21. https://doi.org/10.1002/eco.1773 White J. and Irvine K. 2003. The use of littoral mesohabitats and their macroinvertebrate assemblages in the ecological assessment of lakes. Aquatic Conservation: Marine and Freshwater Ecosystems, 13(4): 331–351. https://doi.org/10.1002/aqc.586 Wijesiri B., Deilami K. and Goonetilleke A. 2018. Evaluating the relationship between temporal changes in land use and resulting water quality. Environmental Pollution, 234: 480–486. https://doi.org/10.1016/j.envpol.2017.11.096 Yakovlev V.A. 1999. Changes in zoobenthos structure of northeastern Fennoscandia influenced by natural and anthropogenic factors. MS thesis. St. Petersburg, 49 p. [In Russian]. Yanygina L.V. and Krylova E.N. 2008. Zoobentos of high-altitude water bodies in the basin of Lake Teletskoye. World of Science, Culture, Education, 4: 18–20. [In Russian]. Yu Z., Wang H., Miao M., Kong Q., Quan Q., Wang R. and Liu J. 2020. Long-term monitoring of community succession in impoundment lake: Responses of macroinvertebrate to South-to-North Water Diversion Project. Ecological Indicators, 118: 106734. https://doi.org/10.1016/j.ecolind.2020.106734 Zahraddeen H.Y., Babangida A. and Isiyaku I.I. 2019. Diversity and distribution of benthic macroinvertebrate fauna of Nasarawa reservoir in Jibia, Katsina state Nigeria. FJS, 3(1): 146–151. Zhang Q., Yang T., Wan X., Wang Y. and Wang W. 2021. Community characteristics of benthic macroinvertebrates and identification of environmental driving factors in rivers in semi-arid areas – A case study of Wei River Basin, China. Ecological Indicators, 121: 107153. https://doi.org/10.1016/j.ecolind.2020.107153
|
© Zoological Institute of the Russian Academy of Sciences
|