Влияние осмотического стресса на концентрацию белка и активность антиоксидантных ферментов в организме девятииглой колюшки Pungitius pungitius (Gasterosteidae) бассейна Белого моряТруды Зоологического института РАН, 2023, 327(1): 98–108 · https://doi.org/10.31610/trudyzin/2023.327.1.98 Резюме Жизненный цикл девятииглой колюшки Pungitius pungitius (Linnaeus, 1758) включает миграции из открытого моря в прибрежные и пресноводные биотопы, в ходе которых рыбы испытывают осмотический шок, провоцирующий впоследствии развитие окислительного стресса. Функцию защиты клеток от избытка образующихся активных форм кислорода, перекиси водорода и гидропероксидов выполняет сложная многоуровневая антиоксидантная система (АОС), включающая низкомолекулярные соединения и специфические ферменты. В проведённом эксперименте молодь девятииглой колюшки из эстуария реки бассейна Белого моря попеременно экспонировали в гипо- и гиперосмотичной среде для изучения ответа компонентов АОС на окислительный стресс, вызванный резкой сменой солености. Показано, что перемещение рыбы из соленой воды в пресную на 1 час и 24 часа привело к снижению концентрации водорастворимого белка и активности каталазы в тканях колюшки. Активность гваякол-зависимой пероксидазы увеличилась после последовательного выдерживания рыб из эстуария в пресной и соленой воде по 24 часа. Не выявлены изменения в активности супероксиддисмутазы и глутатион S-трансферазы при изученных воздействиях. Участие ферментов АОС (в частности, усиление реакции обезвреживания перекиси водорода по пероксидаза-зависимому пути) в реакции на резкую смену солености окружающей среды P. pungitius из Белого моря описано впервые. Результаты нашего исследования дополняют немногочисленные сведения об ответе АОС эвригалинных видов рыб на гипо- и гиперосмотический стресс. Полученные данные могут быть использованы при прогнозировании возможности промышленного разведения рыб в Беломорско-Баренцевоморском бассейне. Ключевые слова антиоксидантная система, Белое море, девятииглая колюшка, Pungitius pungitius, соленость, осмотический стресс, эвригалинный вид Поступила в редакцию 16 октября 2022 г. · Принята в печать 13 февраля 2023 г. · Опубликована 25 марта 2023 г. Литература Aikio S., Herczeg G., Kuparinen A. and Merilä J. 2013. Optimal growth strategies under divergent predation pressure. Journal of fish biology, 82(1): 318–331. https://doi.org/10.1111/jfb.12006 Arnao M.B., Acosta M., del Río J.A. and García-Cánovas F. 1990. Inactivation of peroxidase by hydrogen peroxide and its protection by a reductant agent. Biochimica et Biophysica Acta, 1038(1): 85–9. https://doi.org/10.1016/0167-4838(90)90014-7 Arun S. and Subramanian P. 1998. Antioxidant enzymes in freshwater prawn Macrobrachium malcolmsonii during embryonic and larval development. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 121(3): 273–277. https://doi.org/10.1016/S0305-0491(98)10100-1 Bal A., Panda F., Pati S.G., Das K., Agrawal P.K. and Paital B. 2021. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 241: 108971. https://doi.org/10.1016/j.cbpc.2020.108971 Beers R.F. and Sizer I.W. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. The Journal of biological chemistry, 195: 133–140. https://doi.org/10.1016/s0021-9258(19)50881-x Bruneaux M., Nikinmaa M., Laine V.N., Lindström K., Primmer C.R. and Vasemägi A. 2014. Differences in the metabolic response to temperature acclimation in nine-spined stickleback (Pungitius pungitius) populations from contrasting thermal environments. Journal of experimental zoology. Part A, Ecological genetics and physiology, 321(10): 550–565. https://doi.org/10.1002/jez.1889 Chance B. and Maehly A.C. 1955. Assay of Catalase and Peroxidase. Methods in Enzymology, 2: 764–775. http://dx.doi.org/10.1016/S0076-6879(55)02300-8 Chen J., Mai K., Ma H., Wang X., Deng D., Liu X. and Tan B. 2007. Effects of dissolved oxygen on survival and immune responses of scallop (Chlamys farreri Jones et Preston). Fish and Shellfish Immunology, 22(3): 272–281. https://doi.org/10.1016/j.fsi.2006.06.003 El-Leithy A.A.A., Hemeda S.A., El Naby W.S.H.A., El Nahas A.F., Hassan S.A.H., Awad S.T., El-Deeb S.I. and Helmy Z.A. 2019. Optimum salinity for Nile tilapia (Oreochromis niloticus) growth and mRNA transcripts of ion-regulation, inflammatory, stress- and immune-related genes. Fish Physiology and Biochemistry, 45(4): 1217–1232. https://doi.org/10.1007/s10695-019-00640-7 Fiol D.F. and Kültz D. 2007. Osmotic stress sensing and signaling in fishes. The FEBS journal, 274(22): 5790–5798. https://doi.org/10.1111/j.1742-4658.2007.06099.x Francis R. and Nagarajan K. 2013. Histopathological changes in the muscle tissue of the fish Clarias Batrachus exposed to untreated and treated sago effluent. Advances in Bioscience and Bioengineering, 1(2): 74–80. Fridovich I. 1975. Superoxide Dismutases. Annual Review of Biochemistry, 44: 147–159. https://doi.org/10.1146/annurev.bi.44.070175.001051 Gan L., Xu Z.X., Ma J.J., Xu C., Wang X.D., Chen K. and Li E.C. 2016. Effects of salinity on growth, body composition, muscle fatty acid composition, and antioxidant status of juvenile Nile tilapia Oreochromis niloticus (Linnaeus, 1758). Journal of Applied Ichthyology, 32(2): 372–374. https://doi.org/10.1111/jai.12997 Giang P.T., Sakalli S., Fedorova G., Tilami S.K., Bakal T. and Najmanova L. 2018. Biomarker response, health indicators, and intestinal microbiome composition in wild brown trout (Salmo trutta m. fario L.) exposed to a sewage treatment plant effluent dominated stream. Science of The Total Environment, 625: 1494–1509. https://doi.org/10.1016/j.scitotenv.2018.01.020 Gonzalez R.J. 2012. The physiology of hyper-salinity tolerance in teleost fish: a review. Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology, 182(3): 321–329. https://doi.org/10.1007/s00360-011-0624-9 Guderley H., Lapointe D., Bedard M. and Dutil J.D. 2003. Metabolic priorities during starvation: enzyme sparing in liver and white muscle of Atlantic cod, Gadus morhua L. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 135(2): 347–356. https://doi.org/10.1016/s1095-6433(03)00089-8 Habig W.H., Pabst M.J. and Jakoby W.B. 1974. Glutathione S-Transferases. The first enzymatic step in mercapturic acid formation. The Journal of biological chemistry, 249: 7130–7139. https://doi.org/10.1016/S0021-9258(19)42083-8 Heink A.E., Parrish A.N., Thorgaard G.H. and Carter P.A. 2013. Oxidative stress among SOD-1 genotypes in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 144–145: 75–82. https://doi.org/10.1016/j.aquatox.2013.09.032 Jafari N., Falahatkar B. and Sajjadi M.M. 2018. Growth performance and plasma metabolites in juvenile Siberian sturgeon Acipenser baerii (Brandt, 1869) subjected to various feeding strategies at different sizes. Fish Physiology and Biochemistry, 44: 1363–1374. https://doi.org/10.1007/s10695-018-0527-8 Kavitha C., Malarvizhi A., Kumaran S.S. and Ramesh M. 2010. Toxicological effects of arsenate exposure on hematological, biochemical and liver transaminases activity in an Indian major carp, Catla catla. Food and Chemical Toxicology, 48: 2848–2854. https://doi.org/10.1016/j.fct.2010.07.017 Kim J.H., Jeong E.H., Jeon Y.H., Kim S.K. and Hur Y.B. 2021. Salinity-mediated changes in hematological parameters, stress, antioxidant responses, and acetylcholinesterase of juvenile olive flounders (Paralichthys olivaceus). Environmental Toxicology and Pharmacology, 83: 103597. https://doi.org/10.1016/j.etap.2021.103597 Kültz D. 2015. Physiological mechanisms used by fish to cope with salinity stress. Journal of Experimental Biology, 218: 1907–1914. https://doi.org/10.1242/jeb.118695 Kuparinen A., Cano J.M., Loehr J., Herczeg G., Gonda A. and Merilä J. 2011. Fish age at maturation is influenced by temperature independently of growth. Oecologia, 167(2), 435–443. https://doi.org/10.1007/s00442-011-1989-x Laverty G. and Skadhauge E. 2012. Adaptation of teleosts to very high salinity. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 163: 1–6. https://doi.org/10.1016/j.cbpa.2012.05.203 Lesser M.P. 2006. Oxidative stress in marine environments: biochemistry and physiological ecology. Annual Review of Physiology, 68: 253–78. https://doi.org/10.1146/annurev.physiol.68.040104.110001 Lin G., Zheng M., Gao D., Li S., Fang W., Huang J., Xie J., Liu J., Liu Y., Li Z. and Lu J. 2020. Hypoosmotic stress induced tissue-specific immune responses of yellowfin seabream (Acanthopagrus latus) revealed by transcriptomic analysis. Fish and Shellfish Immunology, 99: 473–482. https://doi.org/10.1016/j.fsi.2020.02.028 Lohner T.W., Reash R.J. and Williams M. 2001. Assessment of tolerant sunfish populations (Lepomis sps.) inhabiting selenium-laden coal ash effluents. Ecotoxicology and Environmental Safety, 50: 217–224. https://doi.org/10.1006/eesa.2001.2098 Lushchak V.I. 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology, 101(1): 13–30. https://doi.org/10.1016/j.aquatox.2010.10.006 Makaras T. and Stankevičiūtė M. 2022. Swimming behaviour in two ecologically similar three-spined (Gasterosteus aculeatus L.) and nine-spined sticklebacks (Pungitius pungitius L.): a comparative approach for modelling the toxicity of metal mixtures. Environmental science and pollution research international, 29(10): 14479–14496. https://doi.org/10.1007/s11356-021-16783-1 Martínez-Alvarez R.M., Hidalgo M.C., Domezain A., Morales A.E., García-Gallego M. and Sanz A. 2002. Physiological changes of sturgeon Acipenser naccarii caused by increasing environmental salinity. The Journal of experimental biology, 205(Pt 23): 3699–3706. https://doi.org/10.1242/jeb.205.23.3699 Mattioli C.C., Takata R., De Oliveira Paes Leme F., Costa D.C. and Luz R.K. 2020. Response of juvenile Lophiosilurus alexandri to osmotic and thermic shock. Fish Physiology and Biochemistry, 46: 51–61. https://doi.org/10.1007/s10695-019-00696-5 Menezes S., Soares A.M.V.M., Guilhermino L. and Peck M.R. 2006. Biomarker responses of the estuarine brown shrimp Crangon crangon L. to non-toxic stressors: Temperature, salinity and handling stress effects. Journal of Experimental Marine Biology and Ecology, 335: 114–122. https://doi.org/10.1016/j.jembe.2006.03.009 Men'shikova E.B., Lankin V.Z., Zenkov N.K., Bondar' I.A., Krugovyh N.F. and Trufakin V.A. 2006. Oxidative stress. Pro-oxidants and antioxidants. Slovo, Moskow, 556 p. [In Russian]. Merilä J. 2013. Nine-spined stickleback (Pungitius pungitius): an emerging model for evolutionary biology research. Annals of the New York Academy of Sciences, 1289: 18–35. https://doi.org/10.1111/nyas.12089 Nepal V. and Fabrizio M.C. 2020. Sublethal effects of salinity and temperature on non-native blue catfish: Implications for establishment in Atlantic slope drainages. PLoS ONE, 15(12): e0244392. https://doi.org/10.1371/journal.pone.0244392 Noble J.E. and Bailey M.J. 2009. Quantitation of Protein. Methods in Enzymology, 463: 73–95. https://doi.org/10.1016/S0076-6879(09)63008-1 Pascual P., Pedrajas J.R., Toribio F., Lopez-Barea J. and Peinado J. 2003. Effect of food deprivation on oxidative stress biomarkers in fish (Sparus aurata). Chemico-Biological Interactions, 145(2): 191–199. https://doi.org/10.1016/s0009-2797(03)00002-4 Pigeolet E., Corbisier P., Houbion A., Lambert D., Michiels C., Raes M., Zachary M.D. and Remacle J. 1990. Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mechanisms of Ageing and Development, 51(3): 283–97. https://doi.org/10.1016/0047-6374(90)90078-t R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/ RStudio Team. 2019. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA Available from: http://www.rstudio.com/ Shakir H.A., Qazi J.I. and Chaudhry A.S. 2014. Examining muscles of Cirrhinus mrigala for biochemical parameters as a bio-indicator of water pollution by municipal and industrial effluents into River Ravi Pakistan. International Aquatic Research, 6: 221–228. https://doi.org/10.1007/s40071-014-0082-6 Shin H.S., An K.W., Kim N.N. and Choi C.Y. 2010. Antioxidant defenses and physiological changes in olive flounder (Paralichthys olivaceus) in response to oxidative stress induced by elevated water temperature. Korean Journal of Ichthyology, 22(1): 1–8. Shukry M., Abd El-Kader M.F., Hendam B.M., Dawood M., Farrag F.A., Aboelenin S.M., Soliman M.M. and Abdel-Latif H. 2021. Dietary Aspergillus oryzae modulates serum biochemical indices, immune responses, oxidative stress, and transcription of HSP70 and cytokine genes in Nile Tilapia exposed to salinity stress. Animals: an open access journal from MDPI, 11(6): 1621. https://doi.org/10.3390/ani11061621 Sinha P., Annamalai S.K. and Arunachalam K.D. 2018. A wee study on behavioural, organ somatic index and histological alterations of the fresh water fish Pangasius sutchi in response to protection studies, exposed to gamma radiation perceived by genotoxic assays. International Journal of Pharmaceutical Sciences Review and Research, 50(2): 18–30. Smirnov L., Sukhovskaya I. and Kochneva A. 2019. Variability of some antioxidant defense parameters and concentration of protein in the larvae of the three-spined stickleback (Gasterosteus aculeatus) in White Sea in the summer. Principles of the Ecology, 2: 98–109. [In Russian]. https://doi.org/10.15393/j1.art.2019.8542 Strange R.C., Spiteri M.A., Ramachandran S. and Fryer A.A. 2001. Glutathione-S-transferase family of enzymes. Mutation Research, 482(1–2): 21–26. https://doi.org/10.1016/s0027-5107(01)00206-8 Sukhovskaya I., Borvinskaya E., Smirnov L. and Nemova N. 2010. Comparative analysis of the methods for determination of protein concentration – spectrophotometry in the 200–220 nm range and the bradford protein assay. Transactions of KarRC RAS. The “Experimental Biology” series, 2: 68–71. [In Russian]. Taugbøl A., Arntsen T., Ostbye K. and Vøllestad L.A. 2014. Small changes in gene expression of targeted osmoregulatory genes when exposing marine and freshwater threespine stickleback (Gasterosteus aculeatus) to abrupt salinity transfers. PLoS One, 9(9): e106894. https://doi.org/10.1371/journal.pone.0106894 Valko M., Rhodes C.J., Moncol J., Izakovic M. and Mazur M. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160(1): 1–40. https://doi.org/10.1016/j.cbi.2005.12.009 Wang L., Wang X. and Yin S. 2016. Effects of salinity change on two superoxide dismutases (SODs) in juvenile marbled eel Anguilla marmorata. Peer J, 4: e2149. https://doi.org/10.7717/peerj.2149 Xu C., Li E., Suo Y., Su Y., Lu M., Zhao Q., Qin J.G. and Chen L. 2018. Histological and transcriptomic responses of two immune organs, the spleen and head kidney, in Nile tilapia (Oreochromis niloticus) to long-term hypersaline stress. Fish and shellfish immunology, 76: 48–57. https://doi.org/10.1016/j.fsi.2018.02.041 Yin F., Peng S., Sun P. and Shi Z. 2011. Effects of low salinity on antioxidant enzymes activities in kidney and muscle of juvenile silver pomfret Pampus argenteus. Acta Ecologica Sinica, 31(1): 55–60. https://doi.org/10.1016/j.chnaes.2010.11.009
|
© Зоологический институт Российской академии наук
|