Я. Я. ЛУС

НЕКОТОРЫЕ ЗАКОНОМЕРНОСТИ РАЗМНОЖЕНИЯ ПОПУЛЯЦИЙ ADALIA BIPUNCTATA L.

БЕССАМЦОВЫЕ ЛИНИИ В ПОПУЛЯЦИЯХ

(Представлено академиком Н. И. Шмальгаузеном 6 III 1947)

Отсутствие самцов в некоторых семьях Adalia bipunctata впервые нами было подмечено в 1932 г. при скрещивании ленинградских самок подвида A. b. bipunctata L. с монгольскими самцами A. b. fasciopunctata Fald. и было принято сначала за результат отдаленной гибридизации. Вскоре, однако, стало ясным, что между этими явлениями нет связи, так как оказалось, что некоторые самки вообще дают лишь бессамцовое потомство при скрещивании с любым самцом — независимо от его происхождения. Определив путем вскрытия соотношение полов в индивидуальных культурах, выкормленных за предшествующие годы, мы тогда же установили, что бессамцовость одного и того же типа распространена в столь отдаленных друг от друга местах, как Ленинград и его окрестности, с одной стороны, и сел. Жаланаш в юго-восточном Казахстане, с другой (3500 км по прямой). В ближайшие годы для опытов был привлечен материал из г. Фрунзе (Киргизия), и выяснилось, что в этой популяции (подвид A. b. turanica mihi), как, повидимому, и в монгольской, бессамцовые линии отсутствуют. В дальнейшем явлению бессамцовости уделялось в наших исследованиях специальное внимание.

Было изучено распределение исследованных природных самок различных популяций Adalia bipunctata по проценту самцов в их потомстве. Изучение показало, что в популяциях Средней Азии (Фрунзе, Ташкент, Джалалабад и Андижан), где обитает подвид turanica, а также в популяции подвида fasciopunctata из Монголии распределение следует нормальной биномиальной кривой с модальными классами 45—50% и 55% с, что отвечает теоретически ожидаемому соотношению полов; в популяциях же подвида bipunctata из Ленинграда и Москвы и в переходной популяции bipunctata-turanica в сел. Жаланаш кривая распределения имеет явно бимodalный характер, причем первая (максимальная) вершина слегка смещена влево от 50%, а
а вторая вершина падает на нулевой класс. Обе вершины соединяются промежуточными по проценту самцов класами самок. Наличие бессамцовских линий в природных популяциях A. bipunctata, таким образом, можно рассматривать в качестве своеобразного случая диморфизма.

Путем подсчета яиц было установлено, что в тех культурах, где самцы отсутствуют полностью или появляются в виде единичных исключительных особей, около половины яиц не дают вылупления (рис. 1), оставаясь налитыми и белесовато-желтыми. Следовательно,

Таблица 1

<table>
<thead>
<tr>
<th>Процент % в семьях дочерей</th>
<th>0–2,5</th>
<th>2,5–12,5</th>
<th>12,5–22,5</th>
<th>22,5–32,5</th>
<th>.32,5–42,5</th>
<th>и выше</th>
</tr>
</thead>
<tbody>
<tr>
<td>в семьях матери</td>
<td>71,5</td>
<td>17,6</td>
<td>3,3</td>
<td>2,8</td>
<td>2,45</td>
<td>2,45</td>
</tr>
<tr>
<td>% в семьях матери</td>
<td>47,1</td>
<td>18,4</td>
<td>6,9</td>
<td>9,2</td>
<td>5,7</td>
<td>12,6</td>
</tr>
<tr>
<td>в семьях матери</td>
<td>50,1</td>
<td>14,1</td>
<td>4,55</td>
<td>4,55</td>
<td>13,6</td>
<td>9,1</td>
</tr>
<tr>
<td>% в семьях матери</td>
<td>21,2</td>
<td>15,1</td>
<td>6,0</td>
<td>3,0</td>
<td>—</td>
<td>30,0</td>
</tr>
<tr>
<td>в семьях матери</td>
<td>20,0</td>
<td>17,1</td>
<td>10,0</td>
<td>—</td>
<td>13,8</td>
<td>86,2</td>
</tr>
<tr>
<td>% в семьях матери</td>
<td>42,5 и выше</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>238</td>
<td>66</td>
<td>.18</td>
<td>17</td>
<td>21</td>
<td>66</td>
</tr>
</tbody>
</table>

отсутствие самцов зависит от гибели мужских зигот на какой-то стадии развития яйца.

В отношении наследования бессамцовости установлены следующие факты.

1. Отсутствием за конкретное соотношение полов в потомстве данной пары является самка.

2. Самки из нормальных семей при спаривании с самцами из таких же нормальных семей дают в потомстве нормальное соотношение полов.

3. Самцы из унисексуальных семей при скрещивании с самцами из нормальных семей в преобладающем большинстве случаев дают такие же бессамковые семьи, в единичных случаях — семьи с нормальным половым соотношением и несколько чаще — семьи с угнетенным в разных степенях процентом самцов. Самцы из семей последнего типа продуцируют эти же категории семей, но в иных соотношениях: чем выше процент самцов в материальной семье, тем больше в ней самок, продуцирующих нормальное по половой соотношению потомство. Самки из семей с восстановленным нормальным половым соотношением дают только нормальные семьи. Сказанное иллюстрируется следующей суммарной таблицей, в которой объединены разные поколения последовательного скрещивания по нескольким бессамковым линиям (табл. 1).

4. При отборе в пределах одной генеалогической бессамковой линии (№ 651) к самкам, происходящим только из бессамковых семей, самцов из линий с нормальным половым соотношением, производившимся на протяжении 11 генераций, с нарастанием поколений не наблюдается тенденция снижения процента самок, продуцирующих бессамковые семьи (беспорядочное колебание от 70 до 90% при числе проверенных самок от 10 до 50 на генерацию).

5. Исключительные самцы в бессамковых семьях не показывают каких-либо отклонений от нормы по жизнеспособности и плодовитости. При скрещивании таких самцов с самками из нормальных линий
в течение первых двух генераций в потомстве последних снижения полового индекса не наблюдалось. Систематических поглощений исключительными самцами на протяжении многих поколений, к сожалению, не удалось провести.

В свете изложенных фактов нет оснований дать удовлетворительное объяснение наследования бессамовости в простых менделевских терминах. Наиболее вероятно, что здесь мы имеем дело с комплексом несколько доминантных аутозомальных летальных генов, действие которых усложнено материнским эффектом и остроконечным мужским полом. Возможность допущения латенс в половых хромосомах исключена. Для дальнейшего судьбы о биологическом значении бессамовости у Adalida bipunctata уместно уточнить, что механизм, лежащий в основе бессамовости, с одной стороны, обеспечивает избыточную продукцию самок, а с другой, не исключает возможности образования нормальных полноценных самцов.

Так как наличие в популяциях бессамовых линий должно снижать средний процент самцов в них, то по последнему можно обратить внимание на распространенность бессамовости. Нами было произведено определение полового соотношения в природных популяциях A. bipunctata для различных точек СССР и Монголии. Так как недостаток места не позволяет привести обширную таблицу, ограничимся только выводами из этих определений. По некоторым точкам мы имеем нарушения за ряд лет, которые показывают, что соотношение полов в данной природной популяции удерживается на близком уровне на протяжении многих лет. Так, процент самцов в популяциях Adalida bipunctata составлял: в Ленинграде — 31,43% в 1934 г. и 29,24% в 1941 г.; в Ст. Петербурге — 28,2% в 1925 г. и 30,34% в 1939 г.; в Москве в 1930 г. — 49,5%, в 1935 г. — 41,85%, в 1936 г. — 27,8%, в 1940 г. — 36,72%, в 1945 г. — 40,3% и в 1946 г. — 33,5%; в Кишиневе в 1917 г. — 41,42%, в 1918 г. — 37,41%, в 1919 г. — 39,60%, в 1946 г. — 38,40%; в сел. Жаланаш (ю.-в. Казахстан) в 1937 г. — 30,91%, в 1938 г. — 31,0%, в 1941 г. — 40,23% и в 1946 г. — 32,2%; во Фрунзе (Киргизия) в 1933 г. — 51,85%, в 1939 г. — 52,77%, в 1940 г. — 54,33%, в 1941 г. — 54,60%, в 1942 г. — 51,80%, в 1945 г. — 49,30%; в Ташкенте в 1908 г. — 50,28%, в 1946 г. — 52,80%. Полиморфизм по бессамовости, таким образом, носит равновесный характер.

Смещение полового соотношения от нормы в пользу самок наблюдается только в популяциях подвида bipunctata и в некоторых популяциях, переходных от этого подвида к подвиду turanica. Оно выражено наиболее сильно в северных районах и в приподнятых горных долинах с аналогичным более суровым климатом. Для всех других характерно также более патиное распределение ограниченных размеров биотопов, используемых Adalida bipunctata. В южных популяциях (Крым, Кавказ, Средняя Азия), а также в монгольской, которые могут использовать более обширные, не прерывающиеся растительные ассоциации, пригодные для жизни этого вида, соотношение полов, как правило, варьирует в узких пределах около нормы (1:1). Показательно, что бессамовые линии наиболее распространены в тех популяциях, которые испытывают, как естественно полагать, более сильные сжатия численности при зимовках, восстановление которых происходит при более ограниченном числе поколений за сезон размножения (1—2), а само размножение происходит при более скученных условиях вынужденно колониального образа жизни.

При широкой полигамии Adalida bipunctata, когда один самец может оплодотворить большое число самок, значение последних для восстановления популяции выше, нежели самцов; поэтому, чем больше самок сохраняется в критические периоды, тем это будет выгоднее.
нее для вида. Так как часть самок вступает в зимовку, будучи покрытыми, а у осемененной осенью самки, как нами точно установлено, жизнеспособная сперма сохраняется в половых путях до весны, и она может приступить к размножению без новой копуляции, то даже при полной гибели в течение зимы всех самцов данной популяции последняя способна к самовосстановлению.

Наличие бессамцов из линий, обеспечивающих более высокий процент самок в популяциях, тем самым при подобных условиях приобретает определенное положительное биологическое значение. Это значение увеличивается благодаря тому, что присутствие бессамцовых линий создает преграду близко родственным спариваниям, столь вредным для данного вида, как это было показано в сообщении (13). Последнее особенно важно именно при вынужденном узко колониальному образе жизни в сезонах размножения. Так как нельзя не отметить, что оставшиеся желтыми яйца в бессамцовских кладках поедаются вылупившимися личниками, которые на этом корне могут просуществовать почти до первой линьки, выходя таким образом на арену свободной жизни уже подросшими и окрепшими. Все это делает понятным, почему бессамцовость у Adalia bipunctata получила столь широкое распространение. Понятно, что бессамцовые линии могут существовать в популяциях только в виде примеси к нормальным линиям, т. е. в виде полиморфизма. Баланс тех и других, Очевидно, поддерживается естественным отбором в конкретных условиях среды.

Смещение полового соотношения от "нормы" (1:1) — вообще довольно распространенное явление у животных. Униесексуальные линии как закономерное явление известны у некоторых видов Sciara (7) и Cecidomyiidae (2) из Diptera, у двух видов мокриц (8, 12) (наземные Isopoda), а также у головной вши (9) и в других группах. Спорадические однополые (чаще бессамцовые) линии конституированы в популяциях Drosophila melanogaster (3, 9, 10), D. phalerata (13), D. obscura (4, 14), D. affinis, D. athabasca, D. azteca и как более частое явление в обоих родах D. pseudoobscura (11). Явление это изучалось в опытах, причем показано, что механизм наследования весьма различен в разных случаях.

Характерно, что многие из видов, которым свойственны унисексуальные линии, ведут скученный образ жизни в изолированных колониях. Банта (1) полагает, что бессамцовые или почти бессамцовые расы у животных, размножающихся партеногенетически, эволюционировали в условиях периодического скучивания и при больших плотностях населения.

Институт эволюционной морфологии
им. А. Н. Северцова
Академия Наук СССР

ЦИТИРОВАНИЯ ЛИТЕРАТУРА