بحث (حياتيات : أعداد طبيعية)

تأثير العائل البنيتي للجرسية وطورها في سلوك التغذية وزمن الإستهلاك لمفترس الذباب الأبيض
(Coleoptera: Coccinellidae) Serangium parcestosum Sicard

رفق عبود و محمد أحمد

(1) هيئة البحث العلمي الزراعية، مركز البحث العلمي الزراعي باللقاء، اللاة، اللاذقية، سورية;
(2) قسم وقاية النبات، كلية الزراعة، جامعة تشرين، اللاذقية، سورية.

الملخص

Serangium parcestosum (Coccinellidae) Serangium parcestosum Sicard

(3) تم استخدام ذباب مفترس على سلوك تغذية ذباب الأبيض بعنوان Delphastus pusillus (Homoptera: Aleyrodidae) tabaci Genn. وتم تأثير ذباب مفترس بالإضافة إلى ذباب العائل البنيتي للجرسية وطورها في بعض الخصائص الغذائية للمفترس. صرح النتائج أن ذباب المفترس يبالحذف بعد الذباب البنيتي للجرسية بعند البترس 14.4، 15.2 و 16.0 يومًا على كل من المكونات والإنتاج وإنتاج النبات والخضريات. إن ذباب المفترس يطارد إنذاب الثدي وينظم فصيلة الكلاملة 15.4.15.4 و 15.0 يومًا على البترس والإنتاج كل مفرد للبترس والذباب والذباب معاً. إن ذباب المفترس في سلوك التغذية حيث بلغ نسبة ذباب الأبيض وتم تأثير ذباب الأبيض وذباب الأبيض، إذ أتاح العقرب البنيتي الأول إلى 125.9 ثانية لذباب الأبيض بينما تأثير العقرب البنيتي الثاني إلى 13.4 ثانية فقط. سجلت نسبة ذباب الأبيض على البترس 95.5% و 96.9% نسبة ذبابة على البترس.

كلمات مفتاحية: ذباب الطائر البنيتي، ذباب الذباب الأبيض، فيل إنه، السعودية، السعودية، السعودية.

البحث

تحدد ذباب الطائر البنيتي (Coccinellidae) سلوك ذباب الأبيض (Delphastus pusillus) لذباب الأبيض (Homoptera: Aleyrodidae) tabaci Genn. كأ kadar للذباب البنيتي للجرسية في المناطق المدارية وتحت المدارية والمناطق الدافئة من العالم، سجل تواجدها في 506 نوع ذباب (9).

تستجيب هذه الحشرة خصائص فائدة نتيجة تحسين كفاءة من التعصص البنيتي للجرسية حيث تصل نسبة ذباب بعند البترس 50% من المحصول أو أكثر (6). كأن ينتج عنها خصائص غير متساوية بسبب التواجد من الندوة العملية لذباب الأبيض الذي يؤدي إلى تأثير الذباب التغذوي، وتُنتج نمو فطر الطين الذباب الذي تأثير سطوح الذباب مما يعطي عملية التعصص البنيتي للجرسية وتبني خطرها الكبير من ناحية الأمراض الفيروسية (4، 12، 17). وثبت أن بعض أنواع الطائر البنيتي ومن بينها ذباب الطائر البنيتي تؤثر على نماذج ذباب الأبيض (3).

تم استخدام سميدات كيميائية على نطاق واسع في مكافحة ذباب الأبيض، وقد تم استخدام مادة عديدة لذباب الأبيض (11). هذه المادة تتكون من ذباب الطائر البنيتي (Serangium parcestosum Sicard) وتتأثر بالمبيض مادة تأثر على ذباب الطائر البنيتي (Serangium parcestosum Sicard). الانتزاع لمثل هذه المادة تأثر في الذباب البنيتي للجرسية (7).

لتحبى الأعمال إلى استخدام بذور بذور للسيطرة على هذه الحشرة، من أهم الاستخدامات التي تم تأثيرها (8، 11، 14).
نائل طور الفرسية في مدة نمو الأطوار غير الكاملة للمفترض - نقلت 75 بروقة للمفترض ببمر أقل من 1 يوم وقتم إلى ثلاث مجموعات، تم كل منها عدداً زائداً من الأطوار المحددة (بيض المجموعة الأولى، بروقات ثانية وخليط من البيض والبروقات للتالئة من ذبابة القطن البيضاء على قطع من أوراق الملحوف وربت إفراقياً وسجلت النتائج كما في التجربة السابقة. نفدت التجارب في محاكاة عند درجة حرارة 27±2°C ورطوبة نسبة 65±5% و14 ساعة إضاءة.

التحليل الإحصائي: حلت النتائج إحصائياً بطريقة التحليل التباينيANOVA، وتتم حساب الإحصاءات العربية لهذه المتغيرات واقترح معنوي عدد مستوى 5% لتحديد الفروقات المعنية بين المتواضعات.

النتائج والمناقشة
سلك التنفس زمن استهلاك الفرسية
تغذى على S. parcesetosum برقات المفترض جميع الأطوار غير الكاملة لذبابة القطن البيضاء، حيث بدأ بالبحث عن الفرسية في الربع الأول من خلال البضام. عندما ترد فريستها تغذى سريعاً، وذلك لتقليل التغذية التي تسبب منها الالزارات، والتي هي متعلقة بالفراشة المتلازمة بالنسبة للمفترض من سطح ورقة النبات عند حافة البرقة أو النزف الفلجية. تم تردد فراشة الفرسية في دورانها في أي خطوة في قطرها في حفرة نباتية خالية. نقلت الفرسية فقط. عندما تغذى برقات الفرسية على برقات الفرسية تغذى سريعاً، ثم تدحرج حفوفها من النبات في النهاية إلى نبات الفرسية. تكمن هذه العملية مرات عدة لبحم الفرسية وشربها. ثم تغذى الفرسية على نبات الفلجية في النهاية مباشرة.

S. parcesetosum

زرعت العوالق النباتية المحددة لذرية الفرسية: بانجان، (Hibiscus esculentus L.) بامية، (Solanum melongena L.) Brassica oleracea وملحوف (Phaseolus vulgaris L.) في أصح بالباستاتيك سعة 3 لتر تلو خطة ترابية وسماع. وربت زرع بنب لبية من ذبابة القطن البيضاء جمعت من حل مزرعة بانجان، وضعت الأطوار في الحل وتمت حفظها ومراقبتها حتى وصلت عداد الأطوار إلى كثافة عالية كافية لإنتاج أعداد من المفترض مخصصة لتنفيذ التجربة المخبرية.

S. parcesetosum

جُمعت 50 حشرة كاملاً من الفرسية (ذكوراً وإتاء) من حول بانجان وضعت الأطوار في بالباستاتيك سعة 3 لتر تلو خطة ترابية وسماع. وربت زرع بنب لبية من ذبابة القطن البيضاء جمعت من حل مزرعة بانجان، وضعت الأطوار في الحل وتمت حفظها ومراقبتها حتى وصلت عداد الأطوار إلى كثافة عالية كافية لإنتاج أعداد من المفترض مخصصة لتنفيذ التجربة المخبرية.

التجارب المخبرية
سلك التنفس زمن استهلاك الفرسية - نقلت حشرات كاملاً وبرقات بانجان بمختلف الأطوار المفترض، وضعت فيها دعمًا، ورقة نباتية مرة أخرى. نقلت الفرسية إلى حفرة نباتية خالية في ترابية، وسط المراقبة وقت حفرة الفرسية وشربها، وتغذى الفرسية على نبات الفلسفة، وهي مكرسة قدرة الفرسية على النزف الفلجية. وتبعد من الفرسية إلى نبات الفرسية، ومستوى 0.01% لجوار الفرسية. وأصلح الفرسية من قليل

اهرشنت النتائج بأن زمن اللام رعية لاستهلاك الفرسية من قبل العقربين البركية الأول والثاني كاملاً طويلاً، ونظراً لتأثير الزمن المترافق مع نظرة على المراجع الثالث والرابع، فما يركز زمن استهلاك الفرسية زاوية حجمها (جدول 1). يمكن أن تؤثر الزوايا في زمن استهلاك عذراء الفرسية بالإضافة إلى زيادة حجمها إلى زيادة حجمها مرة أخرى، وأفادت من التحصين الشامل (رغم خارجي)، وقد وصفت هذه العملية لدى D. pusillus. المفترض 12) أولاً، أما زمن اللام لاستهلاك أطوار الفرسية من قبل الخنازير فكان أكثر قليلاً من زمن الاستهلاك من قبل العقربين البركية لاستهلاك أطوار الفرسية ما عدا البيضاة (جدول 1).
Table 1. Mean handling time by instar and adult of Serangium parcesetosum during consumption of immature stages of Bemisia tabaci.

<table>
<thead>
<tr>
<th>Stages of Bemisia tabaci</th>
<th>Mean handling time (second) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st larval instar (Pupae)</td>
<td>1025.5±188.9</td>
</tr>
<tr>
<td>2nd larval instar (Pupae)</td>
<td>473.9±174.7</td>
</tr>
<tr>
<td>3rd larval instar (Pupae)</td>
<td>313.1±1095.4</td>
</tr>
<tr>
<td>Adult</td>
<td>187.5±458.6</td>
</tr>
<tr>
<td>Egg</td>
<td>86.0±501.7</td>
</tr>
</tbody>
</table>

Table 2. Developmental time for each pre-adult stage of Serangium parcesetosum feeding on Bemisia tabaci on different host plants.

<table>
<thead>
<tr>
<th>Host plants</th>
<th>Mean Developmental times (days) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okra</td>
<td>0.4±3.2b</td>
</tr>
<tr>
<td>Eggplant</td>
<td>0.5±3.5b</td>
</tr>
<tr>
<td>Cabbage</td>
<td>0.4±3.8a</td>
</tr>
</tbody>
</table>

Tangled changes to the S. parcesetosum female were noted in the consumption of immature stages of S. parcesetosum and B. tabaci. S. parcesetosum was more active than B. tabaci in the consumption of immature stages. The mean handling time for B. tabaci was significantly shorter than that of S. parcesetosum at P = 0.05.

Mean handling time (second) ± SD

Egg	1025.5±188.9
1st larval instar (Pupae)	473.9±174.7
2nd larval instar (Pupae)	313.1±1095.4
3rd larval instar (Pupae)	187.5±458.6
Adult	86.0±501.7

An average of 3 days was noted in the consumption of immature stages by S. parcesetosum, whereas B. tabaci took longer, with no significant difference found at P = 0.05.
Mean developmental time (days) ± SD

<table>
<thead>
<tr>
<th>Stages of S. parcesetosum</th>
<th>Egg + larvae</th>
<th>Larvae</th>
<th>Egg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prey-stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg</td>
<td>0.5±3.7a</td>
<td>0.4±3.8a</td>
<td>0.8±3.6a</td>
</tr>
<tr>
<td>1st larval instar</td>
<td>0.5±1.6a</td>
<td>0.5±1.8a</td>
<td>0.5±2.4a</td>
</tr>
<tr>
<td>2nd larval instar</td>
<td>0.5±1.3a</td>
<td>0.6±1.3a</td>
<td>0.6±1.4a</td>
</tr>
<tr>
<td>3rd larval instar</td>
<td>0.5±1.2a</td>
<td>0.5±1.3ab</td>
<td></td>
</tr>
<tr>
<td>Total larval instar</td>
<td>0.7±3.9ab</td>
<td>0.5±3.6b</td>
<td>0.5±4.3a</td>
</tr>
<tr>
<td>Pupa</td>
<td>0.9±8.4a</td>
<td>0.8±7.7b</td>
<td>0.5±8.8a</td>
</tr>
<tr>
<td>Total pupa</td>
<td>0.6±3.8a</td>
<td>0.0±3.0b</td>
<td>0.0±3.0b</td>
</tr>
<tr>
<td>Total</td>
<td>1.4±15.7a</td>
<td>0.2±14.4b</td>
<td>0.5±15.6a</td>
</tr>
</tbody>
</table>

Means in the same row sharing the same letter do not differ significantly at P = 0.05.

Table 3. Survival rate of immature stages of *Bemisia tabaci* reared on larvae of *Serangium parcesetosum* on various host plants.

<table>
<thead>
<tr>
<th>Host</th>
<th>1st instar</th>
<th>2nd instar</th>
<th>3rd instar</th>
<th>4th instar</th>
<th>5th instar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okra</td>
<td>95.46</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Eggplant</td>
<td>84.62</td>
<td>92.37</td>
<td>92.37</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Cabbage</td>
<td>69.57</td>
<td>78.26</td>
<td>78.26</td>
<td>82.61</td>
<td>95.65</td>
</tr>
<tr>
<td>Maize</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Bean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Developmental time (days) for each pre-adult stage of *S. parcesetosum* feeding on immature stages of *B. tabaci*.

<table>
<thead>
<tr>
<th>a Larval stage</th>
<th>B. tabaci (days)</th>
<th>S. parcesetosum (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st instar</td>
<td>0.7 ± 0.6</td>
<td>0.5 ± 0.6</td>
</tr>
<tr>
<td>2nd instar</td>
<td>0.9 ± 0.7</td>
<td>0.5 ± 0.7</td>
</tr>
<tr>
<td>3rd instar</td>
<td>1.2 ± 0.7</td>
<td>0.5 ± 0.7</td>
</tr>
<tr>
<td>4th instar</td>
<td>1.6 ± 0.7</td>
<td>0.5 ± 0.7</td>
</tr>
<tr>
<td>Adult</td>
<td>2.0 ± 0.7</td>
<td>0.5 ± 0.7</td>
</tr>
</tbody>
</table>

Means in the same row sharing the same letter do not differ significantly at P = 0.05.

Means in the same row sharing the same letter do not differ significantly at P = 0.05.

Means in the same row sharing the same letter do not differ significantly at P = 0.05.

Means in the same row sharing the same letter do not differ significantly at P = 0.05.

Means in the same row sharing the same letter do not differ significantly at P = 0.05.

Means in the same row sharing the same letter do not differ significantly at P = 0.05.

Means in the same row sharing the same letter do not differ significantly at P = 0.05.

Means in the same row sharing the same letter do not differ significantly at P = 0.05.

Means in the same row sharing the same letter do not differ significantly at P = 0.05.

Means in the same row sharing the same letter do not differ significantly at P = 0.05.

Means in the same row sharing the same letter do not differ significantly at P = 0.05.
Abstract

A laboratory study was carried out on the predator Serangium parcesetosum Sicard (Coleoptera: Coccinellidae) using the cotton whitefly, Bemisia tabaci (Genn.) (Homoptera: Coccinellidae) as prey (at 27±1°C and 65±5% RH). The present study aimed to observe the predation behavior, feeding time, and to determine the effect of prey host plants and prey stages on the development and survival of S. parcesetosum. Results obtained showed that the predator larvae began feeding upon hatching and they consume all stages of B. tabaci. Developmental time from oviposition to emergence of adults was 14.4, 15.2, 16.0 days on cabbage, eggplant and okra respectively. On the other hand, larvae of S. parcesetosum did not survive on bean leaves. Prey stage affects the total developmental time which was 15.5, 14.4, 15.7 days on eggs, larvae and eggs + larvae, respectively. Handling time increased with stage of whitefly from 125.9 sec. for eggs to 3188.9 sec. for fourth instar. Handling time decreased with stage of predator from 125.9 sec. for first instar on egg to 13.4 sec. for fourth instar. The highest survival rate was on okra (95.5%), whereas the lowest was on cabbage (69.8%).

Key words: Serangium parcesetosum, Bemisia tabaci, host plant, handling time, life cycle.

Corresponding author: M. Ahmad. Department of Plant Protection, Faculty of Agriculture, Tishreen University, Lattakia, Syria.

References

Received: March 24, 2005; Accepted: July 6, 2006

15. Legaspi, J.C., R.I. Carruthers and D.A. Nordlund.
