БУГАЕВА Людмила Николаевна

Биологическое обоснование технологии массового разведения и применения криптотолемуса Cryptolaemus montrouzieri Muls. (Coleoptera, Coccinellidae) для защиты растений

Специальность: 03.00.09 - энтомология

ДИССЕРТАЦИЯ
на соискание ученой степени
кандидата биологических наук

Научный руководитель:
к.б.н. В. И. Пилипюк

Санкт-Петербург
2004
<table>
<thead>
<tr>
<th>СОДЕРЖАНИЕ</th>
<th>стр.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ВВЕДЕНИЕ</td>
<td></td>
</tr>
<tr>
<td>ОБЗОР ЛИТЕРАТУРЫ</td>
<td></td>
</tr>
<tr>
<td>1. Криптотемус в системе интегрированной защиты растений от червей и пульвинарий.</td>
<td>8</td>
</tr>
<tr>
<td>1.1. Ареал распространения криптотемуса</td>
<td>8</td>
</tr>
<tr>
<td>1.2. Особенности морфологии и биологии криптотемуса</td>
<td>8</td>
</tr>
<tr>
<td>1.3. Разведение криптотемуса</td>
<td>18</td>
</tr>
<tr>
<td>1.4. Применение криптотемуса в борьбе с мучнистыми червцами и пульвинариями</td>
<td>20</td>
</tr>
<tr>
<td>2. МАТЕРИАЛЫ И МЕТОДЫ</td>
<td></td>
</tr>
<tr>
<td>2.1. Содержание имаго и личинок криптотемуса при разведении на мучнистом червце</td>
<td>28</td>
</tr>
<tr>
<td>2.2. Содержание личинок криптотемуса при разведении на ИПС</td>
<td>29</td>
</tr>
<tr>
<td>2.3. Содержание имаго и личинок криптотемуса при разведении на криоконсервированных яйцах сиитотропи</td>
<td>30</td>
</tr>
<tr>
<td>2.4. Тестирование основных биологических показателей культуры криптотемуса</td>
<td>31</td>
</tr>
<tr>
<td>2.5. Методика подбора искусственного субстрата для откладки яиц криптотемусом</td>
<td>31</td>
</tr>
<tr>
<td>2.6. Методы оценки генетической гетерогенности криптотемуса и его селекции по признаку плодовитости</td>
<td>31</td>
</tr>
<tr>
<td>2.7. Учет численности и оценка эффективности колонизации криптотемуса</td>
<td>33</td>
</tr>
<tr>
<td>2.8. Методика обработки препаратами и оценки их токсичности</td>
<td>33</td>
</tr>
<tr>
<td>РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ</td>
<td></td>
</tr>
<tr>
<td>3. Разведение криптотемуса на искусственных и естественных заменителях природного корма</td>
<td>34</td>
</tr>
<tr>
<td>3.1. Усовершенствование искусственных питательных сред для разведения криптотемуса</td>
<td>36</td>
</tr>
<tr>
<td>3.2. Разведение криптотемуса на естественном заменителе природного корма</td>
<td>40</td>
</tr>
<tr>
<td>4. Оптимизация технологии разведения криптотемуса</td>
<td>50</td>
</tr>
<tr>
<td>4.1. Инициация откладки яиц у самок в лабораторных условиях</td>
<td>50</td>
</tr>
<tr>
<td>4.2. Динамика откладки яиц и оптимизация сроков сбора яйцекладок при разведении криптотемуса</td>
<td>54</td>
</tr>
<tr>
<td>4.3. Холодовая анестезия криптотемуса</td>
<td>56</td>
</tr>
<tr>
<td>4.4. Селекция криптотемуса на повышение плодовитости</td>
<td>60</td>
</tr>
<tr>
<td>5. Промышленное производство криптотемуса</td>
<td>69</td>
</tr>
</tbody>
</table>
6. Применение криптотемуса для защиты растений от червей и пульвинарий

6.1. Эффективность криптотемуса в зависимости от соотношения хищник-жертва при выпуске

6.2. Колонизация криптотемуса на чайных плантациях в санаторно-курортной зоне Черноморского побережья

6.3. Экономическая эффективность применения криптотемуса против продолговатой подушечницы на чайных плантациях

6.4. Применение криптотемуса для защиты растений в закрытом грунте

6.5. Отработка методики транспортировки и расселения криптотемуса

6.6. Сравнительное действие инсектицидов на личинок криптотемуса

Выводы

Практические рекомендации

Список литературы

Приложения
ВВЕДЕНИЕ

Криптолемус (Cryptolaemus montrouzieri Muls., Coleoptera, Coccinellidae) — один из наиболее эффективных кокцидофагов, применяемых для биологической защиты растений от червецов и щитовок. В практику биологического метода защиты этот хищник вошел более 120 лет назад, когда он был интродуцирован из Австралии в Калифорнию. В настоящее время криптолемус применяется в качестве кокцидофага на территории 17-ти стран, в том числе России, США, Франции, Португалии, Турции и др. (Бугаева и др., 2000; Khalaf, Aberoomand, 1989; Mani, Krishnamoorthy, 1990; Moses et al., 2000). Объектами защиты являются цитрусовые и декоративные культуры, виноград, чай, кофе.

Криптолемус — тропический вид, который не имеет в своем жизненном цикле диапаузы. Поэтому его акклиматизация в природной среде возможна только в зоне тропиков. В странах с более холодным климатом криптолемуса применяют методом сезонной колонизации, предварительно размножив энтомофага в инсектариях или на биофибриках. Разработка массового разведения криптолемуса шла по двум основным направлениям:

1) на корме, которым хищник питается в природе (Smith, Armitage, 1920, Сысоев, 1953, Пилипюк и др., 1988).

2) на заменителях природного корма (синтетических и полусинтетических питательных средах) (Согоян, 1974).

Попытки создать искусственную питательную среду (ИПС) для криптолемуса предпринимались неоднократно, однако успехом эти исследования не увенчались. Предлагаемые ИПС отличаются сложным составом и не обеспечивают достаточно высоких или хотя бы удовлетворительных репродуктивных показателей культуры C. montrouzieri. Кроме того, в состав лучших из созданных ИПС входит до 20% сухого мучнистого червеца, а для откладки яиц энтомофагу требуются овсяки мучнистого червеца. Следовательно, применение ИПС не избавляет от необходимости разводить этого фитофага.
Очевидно, что полноценной альтернативы разведению криптотемуса на естественном корме пока не найдено. Однако, методику разведения на муцинистом червее отличает целый ряд недостатков, которые требуют исправления и оптимизации. В частности на этапе сбора яйцекладок высокая двигательная активность жуков чрезвычайно затрудняет смену корма и субстрата для откладки яиц.

Перспективным следует признать поиск новых видов естественного корма, помимо муцинистого червца. Широкая пищевая специализация криптотемуса позволяет расширить круг его жертв, на которых хищника предполагается разводить в условиях биолабораторий. В этом направлении с успехом велись работы на других хищных колкихелладах (хармонии и др.) (Brun, 1993; Ferran et al., 1997; Abdel-Salam et al., 2000). Накопленный опыт показывает, что переход на естественный заменитель природного корма позволяет удесявить разведение, делает его более технологичным, повышает надежность системы разведения.

Применяют криптотемуса на широком спектре культур в агроценозах разных типов: от чайных плантаций и виноградников до оранжереи ботанических садов, которые отличаются значительным флористическим разнообразием тропических культур. Очевидно, что методики колонизации энтомофага, регламенты его применения должны быть откорректированы в соответствии с типом агроценоза, культурой и др. параметрами.

Всесторонний анализ проблемы позволил сформулировать цель и основные задачи работы.

Цель работы: биологически обосновать принципиально новую технологию промышленного разведения криптотемуса и его колонизации для защиты тропических и субтропических растений от червцов и пульвинарий.

Для достижения поставленной цели необходимо решить следующие главнейшие задачи:

1. Найти технологически и биологически приемлемые заменители природного корма криптотемуса и субстратов для откладки яиц самками хищника.
2. Оптимизировать методику сбора яиц при разведении криптогемуса.
3. Оценить возможности селективного улучшения маточных культур криптогемуса.
4. Исходя из особенностей биологии криптогемуса обосновать общую схему технологии его промышленного разведения.
5. Апробировать в технологическом режиме отдельные узлы и всю конструкцию изготовленной линии по производству криптогемуса на предмет адаптивного соответствия биологии этого энтомофага.
6. Оптимизировать регламенты использования и способы колонизации криптогемуса на тропических и субтропических культурах открытого грунта и в оранжереях ботанических садов.

Научная новизна. Впервые доказана возможность использования свежих и криоконсервированных яиц зерновой моли *Sitotroga cerealella* в качестве полноценного заменителя природного корма при массовом разведении криптогемуса. Разработана оригинальная технологическая линия для массового круглогодичного производства энтомофага без снижения основных биологических показателей культуры.

Выявлена генетическая гетерогенность лабораторной культуры криптогемуса. Доказана возможность селективного улучшения культуры. Получены линии высокопродуктивные энтомофага.

Впервые изучены особенности колонизации криптогемуса в условиях оранжерей ботанических садов северо-западного региона РФ. Впервые создана технология расселения криптогемуса на чайных плантациях с использованием искусственных убежищ для куколок энтомофага.

Практическая значимость. Использование криоконсервированных яиц ситотроги в качестве естественного заменителя природного корма упрощает процесс его разведения и повышает надежность технологии массового производства. Зерновая моль — это корм, который можно получить в достаточном количестве на существующих биофабриках и Ста3Р. Криоконсервация яиц ситотроги позволяет заготавливать корм впрок.
Подобраны оптимальные условия холодовой анестезии жуков, а также заменитель естественного субстрата для откладки яиц, что позволяет оптимизировать технологию сбора яиц в режиме массового разведения криптолемуса.

Предложен оригинальный способ транспортировки и расселения криптолемуса на стадии куколки в искусственных убежищах, что сокращает потери биоматериала, а также временные затраты времени при расселении на больших площадях.

Созданная система производства и расселения криптолемуса делает возможным его широкомасштабное применение в открытом грунте.

Апробация работы. Разработан технологический регламент на производство криптолемуса и технические условия (утверждены МСХ РФ, Главным управлением химизации и защиты растений с Госхимкомиссиией 7 сентября 1993 г.). Совместно с ВНИИЦ «Биотехника» (г. Одесса) создан и смонтирован на базе Лазаревской ОС ВИЗР комплекс оборудования для производства криптолемуса (паспорт 118.00.00.ПС). Испытания по приемке комплекта оборудования проведены комиссией объединения «Союзсельхозхимия» (акт приемки продукции утвержден 27 сентября 1985 г.).

Оценка экономической эффективности применения криптолемуса проведена на чайных плантациях сельхозпредприятия «Дагомысский» (1986-1988 гг.).

ОБЗОР ЛИТЕРАТУРЫ

1. Криптотелемус в системе интегрированной защиты растений от червей и пульвинарий

В регионах с влажным субтропическим и тропическим климатом криптотелемус широко применяется для биологической защиты винограда, чая, цитрусовых и декоративных культур. История интродукции и применения этого вида насчитывает более 100 лет. В Россию криптотелемус завезен в 1933 г. и с этого времени используется в биологической защите виноградников, плантаций чая и цитрусовых культур, а также декоративных растений в оранжериях ботанических садов (Теленга, 1937; Яхонтов, 1960).

1.1. Ареал распространения криптотелемуса

Cryptolaemus montrouzieri - индо-австралийский вид, распространен в северо-восточной и восточной части Австралии. Его происхождение связывают с районом Новой Каледонии и Квинсленда. Естественные места обитания хищника — умеренно влажный лес в зоне тропиков и субтропиков. Южная граница ареала доходит до Канберры (35° ю. ш.), северной границей служит побережье Австралии (15-18° ю. ш.).

Криптотелемус интродуцирован и акклиматизировался во многих странах мира. Энтомофаг нашел вторую родину и размножается естественным путем без вмешательства человека на Гавайских островах, в Порто-Рико в Вест-Индии, на Кубе, Восточной Яве, в Новой Зеландии, юго-восточном побережье Франции, средиземноморском побережье Испании и др. (Самойлова, 1948).

1.2. Особенности морфологии и биологии криптотелемуса

У имаго тело овальной, выпуклой формы. Длина 3,4-4,5 мм, ширина 2,4-3,1 мм. Жуки черного цвета, голова, переднеспинка, вершина надкрылий и брюшко красноватые. Пунктировка головы, переднеспинки и надкрылий густая, за исключением плечевого бугорка (блестящий и практически лишен точек). Половой диморфизм выражен слабо. У самцов передние ноги светлые (красно-желтые), иногда только на голенях имеются темные пятна. У самок все ноги черного цвета. Яйца удлиненно-овальные, гладкие, лимонно-желтого цвета, около 1 мм длины. Личинки после выплутения из яиц желтовато-зеленые, по мере роста на их теле об-
разуются восковые нити. Тело личинок 2-4 возрастов сплошь покрыто белыми, неправильной формы восковыми ворсами. Куколки находятся внутри личиночной шкурки, внешне похожи на личинок, но значительно короче и шире их (Савойская, 1983 а, б; Mineo, 1967).

1.2.1. Жизненный цикл

Самки криптотолемуса выходят из куколок неполовозрелыми. В природе они приступают к откладке яиц в возрасте 10-12 дней после спаривания и обязательного дополнительного питания. В лабораторных условиях (температура 25-27°С, влажность 75-80%) откладка яиц начинается раньше — через 7-9 дней после выхода имаго из куколок (Пилюп и др., 1988).

Самка откладывает яйца по одному, реже по несколько штук в яйцевые мешки (овисаки) мучнистых червей и подушечниц. Вылупившиеся из яиц личинки пытаются в овисаках яйцами своей жертвы. По мере роста личинки становятся подвижнее и переходят на питание червей (имаго и личинками). Личинки четвертого возраста, закончив питание, скапливаются в различных укромных местах (Тряпицын и др., 1982; Mineo, 1967).

Продолжительность развития преimagинальных стадий зависит от температуры. При оптимальных для криптотолемуса температуре 25-27°С и влажности 75-80% продолжительность развития преimagинальных стадий составляет 29-47 дней, из них стадия яйца — 4-6 дней, личинки — 19-30 дней, куколки — 6-11 дней (рис. 1).

В диапазоне среднесуточных температур 20-25°С жизненный цикл криптотолемуса растягивается до 50-85 дней (рис. 1).

При строго фиксированной температуре развитие проходит быстрее, чем при температурных колебаниях. В частности при постоянной температуре 20°С срок развития криптотолемуса составляет 65 дней, что на 20 дней меньше чем при такой же среднесуточной температуре.

Продолжительность личиночной стадии определяется не только климатическими условиями, но и кормом (его количеством и качеством). При недостатке пищи срок развития увеличивается пропорционально периоду голодания.
Рис. 1. Продолжительность развития преимагинальных стадий криптолемуса при воспитании на естественном корме.

а – Лазаревское, корм – червец Planococcus ficus Sign.

б – Индия, корм - червец Maconellicoccus hirsutus (Babu, Azam, 1987 а),

Соотношение полов у криптолемуса в норме соответствует 1:1, однако в зависимости от температуры и сезона возможны отклонения. Некоторыми авторами была отмечена зависимость этого показателя от температуры. При 20°C наблюдался сдвиг в соотношении полов в сторону самок; при 30°C сдвиг в сторону самцов (Babu, Azam, 1987 а).

При круглогодичном разведении криптолемуса в условиях инсектория (Лазаревское) большую часть года соотношение полов соответствует 1:1 или отмечается преобладание самцов, в летние месяцы возможен сдвиг в сторону самок (Пилипюк и др., 1988).

1.2.2. Температурные требования и холодоустойчивость

Криптолемус в силу своего тропического происхождения является теплолюбивым видом и весьма требователен к температурным условиям. Приемлемыми для его развития и репродукции являются температуры в диапазоне 20-30°C. Продолжительность жизни жуков при этом составляет 3-4 месяца. Отдельные особи в лабораторных условиях при избытке корма могут существовать до года.