First Record of *Hesperomyces virescens* Thaxter (Laboulbeniales: Ascomycetes) on *Harmonia axyridis* (Pallas) (Coleoptera: Coccinellidae)

Author(s): Sandra Garcés and Roger Williams

Published By: Kansas Entomological Society

DOI: http://dx.doi.org/10.2317/0304.18.1

The laboulbenialean fungus *Hesperomyces virescens* Thaxter (1891) is reported here for the first time parasitizing the infamous multicolored Asian lady beetle, *Harmonia axyridis* (Pallas) (Coleoptera: Coccinellidae). Laboulbeniales (Ascomycetes) are obligate parasites of arthropods and receive their nutrition through a haustorium, which penetrates the cuticle (Evans, 1988). Weir and Hammond (1997) demonstrated that among the Insecta a wide range of taxa serve as hosts with approximately 80% of all known Laboulbeniales recorded from Coleoptera. Approximately 25% of the Laboulbeniales have been reported as ectoparasites of Staphylinidae and another 25% attacking Carabidae. In the UK, Weir and Beakes (1996) reported *Hesperomyces virescens* from two species of coccinellids, *Adalia bipunctata* (L.) and *Olla v-nigrum* (Mulsant). The species *H. virescens* is described as one of the few among the Laboulbeniales in which the haustoria form several narrow branches radiating out into the body cavity (Batra, 1979). Kamburov et al. (1967) found that *H. virescens* caused premature mortality of the coccinellid, *Chilocorus bipustulatus* L. in Israel where this lady beetle is an important predator of several different citrus scales (Homoptera: Diaspididae).

This paper reports *H. virescens* as a parasite of *Harmonia axyridis* (Pallas), an important lady beetle predator and a noteworthy contaminant of wine. This ladybug caused the demise of hundreds of thousands of liters of wine due to a disagreeable odor and bitter flavor the beetles impart to the wine (Lawrason, 2003; Williams, 2003).

Materials and Methods

Surveys were initiated for monitoring *H. axyridis* during summer 2002 in order to determine their abundance in grapes where their high numbers had caused substantial problems in the two preceding years. These collections were on our campus in Wooster, Ohio and other locations in northeastern Ohio. In addition to grapes, we monitored alfalfa and mung beans weekly. Beetles were collected in grapes and mung beans by brushing them from the plants into a collection container. In alfalfa 100 sweeps were taken with an insect collection net on a weekly basis. The number of beetles were counted, recorded and placed in polypropylene cages.

Field collected ladybugs were stored in a cooler at approximately 20°C until they were transported to the laboratory. They were then examined under a stereoscope to determine sex of the individual (according to drawings by Cristine Nalepa) as well as presence and location of the ectoparasite. SEM technology was used initially for making micrographs used in identification.

Results and Discussion

The Laboulbeniales encountered attacking *H. axyridis* in this study was identified as *Hesperomyces virescens* Thaxter. In our collections we routinely collected the following lady beetles: *Harmonia axyridis*, *Hippodamia convergens* Guérin-Méneville, *H. variegata* (Goeze), *H. parenthesis* (Say), *Coccinella septempunctata* L. and *Coleomegilla maculata* Timberlake. However, only *H. axyridis* was found to be parasitized by *Hesperomyces virescens*.

During the primary grape growing season (July–August) approximately 17% of the *H. axyridis* collected were infected with *Hesperomyces virescens*. Later in the year (September–November), following an aggregation period, 55%–60% of the multicolored Asian lady beetles examined were infected (Table 1).
Both sexes of *H. axyridis* were susceptible to the fungus. However, the majority of the parasitism was observed in males (Table 1) and the greater percentage of parasitism was concentrated on the ventroposterior of males and dorsoposterior of females. A lesser degree of infection was found on the legs and prothorax of both sexes. In autumn, after a period of aggregation, during cold weather, infection was generally more conspicuous on the elytra, prothorax and legs (Fig. 1). Developmental stages of the fungus were identified through electron microscopy. SEM magnification revealed the unique morphological characters of this fungus (Fig. 2).

Voucher specimens of the infected insects were sent to the two primary specialists in this fungal group, Alex Weir and Sergio Santamaría.

Table 1. *Harmonia axyridis* collected in grapes, alfalfa and mung beans infected with *Hesperomyces virescens* Thaxter. OARDC-Wooster, 2002.

<table>
<thead>
<tr>
<th></th>
<th>Number of H. axyridis collected</th>
<th>Number of H. axyridis parasitized by H. virescens</th>
<th>Percentage of parasitized</th>
<th>Average % of H. axyridis parasitized by H. virescens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Female</td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>Jul–Aug</td>
<td>99</td>
<td>100</td>
<td>23</td>
<td>11</td>
</tr>
<tr>
<td>Sept</td>
<td>110</td>
<td>200</td>
<td>30</td>
<td>157</td>
</tr>
<tr>
<td>Oct–Nov</td>
<td>105</td>
<td>182</td>
<td>21</td>
<td>137</td>
</tr>
</tbody>
</table>

Both sexes of *H. axyridis* were susceptible to the fungus. However, the majority of the parasitism was observed in males (Table 1) and the greater percentage of parasitism was concentrated on the ventroposterior of males and dorsoposterior of females. A lesser degree of infection was found on the legs and prothorax of both sexes. In autumn, after a period of aggregation, during cold weather, infection was generally more conspicuous on the elytra, prothorax and legs (Fig. 1). Developmental stages of the fungus were identified through electron microscopy. SEM magnification revealed the unique morphological characters of this fungus (Fig. 2).

Voucher specimens of the infected insects were sent to the two primary specialists in this fungal group, Alex Weir and Sergio Santamaría.

Acknowledgments

We thank Kevin McClure, Dan Fickle and Diane Hartzer of the Small Fruit Laboratory; Leona Horst, Dave Fulton, Karli Fitzelle, from the Molecular Cellular Imaging Center; and Ken Chamberlain from the Photography Section for their technical assistance. Also we thank the specialists, Alex Weir and Sergio Santamaría, for determining the Laboulbeniales to species, and Dr. Dave Horn for reviewing the manuscript.

![Fig. 1. Adult of *Harmonia axyridis* caught in the late fall with numerous colonies of *Hesperomyces virescens* anchored to its exoskeleton. Heavier infection was noted on beetles caught in the late fall after a period of aggregation.](image-url)
Literature Cited

Fig. 2. SEM of Hesperomyces virescens on the integument of Harmonia axyridis demonstrating morphological characteristics of the fungus.