Life table parameters of the pseudococcid predators *Nephus includens* and *Nephus bisignatus* (Coleoptera: Coccinellidae)

DIMITRIS C. KONTODIMAS¹, **PANAGIOTIS G. MILONAS**/*, **GEORGE J. STATHAS**², **LEONIDAS P. ECONOMOU**³ and **NICKOLAS G. KAVALLIERATOS**¹

¹Benaki Phytopathological Institute, Department of Entomology, St. Delta 8, 145 61, Kifissia, Greece, ²Technological Educational Institute of Kalamata, 24 100, Antikalamos, Greece ³Agricultural University of Athens, 75 Iera Odos str., 118 55, Votanikos, Athens, Greece

Key words. Coccinellidae, *Nephus bisignatus*, *Nephus includens*, development of immature stages, fecundity, survival, *Planococcus citri*, temperature

Abstract. The fecundity of the pseudococcid predators *Nephus includens* (Boheman) and *N. bisignatus* (Kirsch) (Coleoptera: Coccinellidae), fed on *Planococcus citri* Risso (Homoptera: Pseudococcidae), was studied at several constant temperatures (15, 20, 25, 30, 32.5 and 35°C). With additional data for the development of the immature stages, life-fecundity tables were constructed and some population parameters calculated. The average total fecundities of *N. includens* at the above temperatures were 49.2, 97.8, 162.8, 108.5, 87.4 and 31.1 eggs/female, and average longevities 99.5, 84.7, 69.5, 61.1, 49.6 and 30.1 days, respectively. The net reproductive rates (R₀) were 13.9, 26.4, 31.3, 15.2 and 3.6 females/female and the intrinsic rates of increase (rₘ) were 0.017, 0.035, 0.060, 0.051 and 0.024 females/female/day, respectively. The survival of females at each temperature was fitted using a Weibull distribution \[S(t) = e^{-(\frac{t}{\theta})^n}\]. Furthermore two mathematical models [Enkegaard equation: \(F = (a + b + x) \cdot e^{(x-x_{min})}\), Analytis equation: \(F = a \cdot (x-x_{min})^3 \cdot (x_{min}-x)^3\)] were fitted to the fecundity data.

INTRODUCTION

Nephus bisignatus (Boheman) and *N. includens* (Kirsch) (Coleoptera: Coccinellidae) are important indigenous predators of mealybugs (Homoptera: Pseudococcidae) in Greece (Argyriou et al., 1976; Kontodimas, 1997). *Nephus bisignatus* is found in Northern Europe (South Norway, Finland, Sweden, Denmark, Netherlands and Germany) (Pope, 1973), but is also reported from Morocco, Southern France, Italy and Portugal (Pope, 1973; Francardi & Covassi, 1992; Magro & Hemptinne, 1999; Magro et al., 1999). It was recently reported in Greece on *Thuja orientalis* L. (Cupressaceae) and *Pistacia lentiscus* L. (Anacardiaceae) infested with *Planococcus citri* (Homoptera: Pseudococcidae) (Kontodimas, 1997). *Nephus includens* is reported from Greece, Turkey, Italy, Spain and Portugal (Bodenheimer, 1951; Viggiani, 1974; Argyriou et al., 1976; Longo & Benfatto, 1987; Suzer et al., 1992; Katsoyannos, 1996; Magro & Hemptinne, 1999; Magro et al., 1999). Although there are rare data on the fecundity of *N. bisignatus* or *N. includens*, Tranfaglia & Viggiani (1972) report that females lay 150.6 eggs and live for 74 days at 25–27°C when fed on *P. citri*. The developmental zeros (lower temperature threshold) are estimated to be 10.9 and 9.4°C and thermal constants to be 490.5 and 614.30 degree-days for *N. includens* and *N. bisignatus*, respectively, using a linear model. The upper temperature thresholds are estimated to be 36.1 and 34.7°C, respectively, using the Lactin non-linear model (Kontodimas et al., 2004). Life table parameters are often used by biological control workers (Messenger, 1964) when choosing the most effective biocontrol agents. In the absence of other criteria, the species with the greatest rₘ is usually selected.

In the present study the fecundities of the two predators were examined under laboratory conditions and used to obtain the following life table parameters: age specific survival and fecundity, reproductive value, expected remaining life time, net reproductive value, intrinsic rate of increase, mean generation time, finite rate of increase and doubling time. The above parameters can be used to estimate the rate of increase of a natural or released population (El Hag & Zaitoon, 1996) and to determine when to release laboratory-reared coccinellid. In addition, two mathematical models were fitted to the fecundity data and the survival of adult females were described using the Weibull distribution. The current study compares the life table parameters of *N. bisignatus* and *N. includens* feeding on *P. citri* and provides useful information on their future use as biocontrol agents of mealybug pests.

* Corresponding author; e-mail: p.milonas@bpi.gr
<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Females (percentage)</th>
<th>Average total fecundity (eggs)</th>
<th>Survival of instars (%)</th>
<th>Duration of (egg-pupa) development (days)</th>
<th>Pre-ovipositional period (days)</th>
<th>Longevity (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. includens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>67.5</td>
<td>49.2</td>
<td>75.0</td>
<td>94</td>
<td>20</td>
<td>174</td>
</tr>
<tr>
<td>20</td>
<td>62.0</td>
<td>97.8</td>
<td>86.8</td>
<td>46</td>
<td>9</td>
<td>128</td>
</tr>
<tr>
<td>25</td>
<td>55.5</td>
<td>162.8</td>
<td>94.3</td>
<td>30</td>
<td>6</td>
<td>94</td>
</tr>
<tr>
<td>30</td>
<td>58.5</td>
<td>108.5</td>
<td>90.0</td>
<td>21</td>
<td>4</td>
<td>91</td>
</tr>
<tr>
<td>32.5</td>
<td>59.5</td>
<td>87.4</td>
<td>87.0</td>
<td>19</td>
<td>4</td>
<td>77</td>
</tr>
<tr>
<td>35</td>
<td>63.5</td>
<td>31.1</td>
<td>69.4</td>
<td>21</td>
<td>4</td>
<td>52</td>
</tr>
<tr>
<td>N. bisignatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>64.0</td>
<td>54.68</td>
<td>77.8</td>
<td>91</td>
<td>22</td>
<td>193</td>
</tr>
<tr>
<td>20</td>
<td>60.0</td>
<td>72.12</td>
<td>82.9</td>
<td>48</td>
<td>10</td>
<td>159</td>
</tr>
<tr>
<td>25</td>
<td>53.0</td>
<td>96.88</td>
<td>90.2</td>
<td>32</td>
<td>7</td>
<td>110</td>
</tr>
<tr>
<td>30</td>
<td>57.5</td>
<td>56.00</td>
<td>83.0</td>
<td>25</td>
<td>5</td>
<td>98</td>
</tr>
<tr>
<td>32.5</td>
<td>60.5</td>
<td>22.80</td>
<td>73.7</td>
<td>28</td>
<td>6</td>
<td>74</td>
</tr>
</tbody>
</table>

Table 1. Fecundity of *Nephus includens* and *Nephus bisignatus* at constant temperatures (15, 20, 25, 30, 32.5 and 35°C) (relative humidity: 65%, photoperiod: 16L : 8D, prey: *Planococcus citri*).

Fig. 1. Age specific survival (l_i) and age specific fecundity (m_i) of *Nephus includens* and *Nephus bisignatus* at different constant temperatures.
MATERIAL AND METHODS

Rearing methods and experimental conditions

Nephus bisignatus and N. includens were originally collected in 1997 from Thuja orientalis L. (Cupressaceae) in Attiki County (Central Greece) and Citrus sp. (Rutaceae) in Preveza County (Northwestern Greece), respectively, both infested with P. citri. The same mealybug was used as prey for rearing these predators in the laboratory. Citrus mealybug was reared on potato sprouts (Solanum tuberosum) and pumpkins (Cucurbita pepo and C. maxima) at 25 ± 1°C, 16L : 8D photoperiod and 65 ± 2% RH, in large plastic boxes (30 × 40 × 15 cm) tightly covered with mesh (holes: 0.3 × 0.4 cm). Both predators were reared in large cylindrical Plexiglas cages (50 cm height × 30 cm diameter) at constant temperatures of 15°C, 20°C, 25°C, 30°C, and 35°C.

Fig. 2. The age specific fecundity (m_x) of Nephus includens at different constant temperatures fitted using Enkegaard and Analytis models.
cm diameter) containing an abundance of prey under the following controlled conditions: 15, 20, 25, 30, 32.5, or 35 ± 1°C; 65 ± 2% RH; 16L : 8D.

The fecundity of the two predators was determined using 25 newly emerged pairs of adults of each species, which were kept in plastic cages under constant conditions (temperature: 15 ± 1, 20 ± 1, 25 ± 1, 30 ± 1, 32.5 ± 1, 35 ± 1°C, relative humidity: 65 ± 2% and an abundant supply of *Planococcus citri* as food). The same conditions were used to study the survival of the immature stages and the sex ratio of the progeny. These experiments were done in the spring of 2001.

The longevity and fecundity of the 25 females were recorded daily and the following table parameters calculated (Birch, 1948; Southwood, 1966; Izhevsky & Orlinsky, 1988; Carey, 1993; Liu et al., 1997; Lysyk, 2001):

- **Age specific survival** (l_x) of 25 females.
- **Age specific fecundity** (m_x) (females born/female) by multiplying the mean number of eggs by the ratio ($\varphi / \varphi + \delta$) (Liu et al, 1997).
- **Net reproductive value** (R_0), the average number of offspring a female in a population will produce in her lifetime.
- **Intrinsic rate of increase** (r_m) from the solution of the Euler equation, \(\Sigma(e^{r_m} \cdot l_x \cdot m_x) = 1 \).
- **Mean generation time** using two different formulas:
 \[T_c = \frac{\Sigma(l_x \cdot m_x)}{R_0} \]
 \[T = \frac{\ln R_0}{r_m} \]
- **Finite rate of increase**: \(\lambda = e^{r_m} \), the number of times the population increases per unit time.
- **Doubling time**: \(DT = \frac{\ln 2}{r_m} \), the time it takes a population to double in size.
- **Reproductive value** of the females: \(V_x = \frac{\Sigma(l_x \cdot m_x)}{l_x \cdot e^{r_m}} \).
- **Expected remaining life time** of the females: \(E_x = \frac{\Sigma(l_x \cdot d_i)}{l_x} \).

The fecundity was calculated as females/female.

Fig. 3. The age specific fecundity (m_x) of *Nephus bisignatus* at different constant temperatures fitted using Enkegaard and Analytis models.
RESULTS AND DISCUSSION

Both species were most fecund at 25°C (162.8 eggs/female in N. includens, 96.9 eggs/female in N. bisignatus). N. includens had a consistently higher fecundity than N. bisignatus at each experimental temperature, except 15°C (Table 1). However for both species, the highest fecundity was smaller than that reported for C. montrouzieri (Babu & Azam, 1988) and N. reunioni (Izhevsky & Orlinsky, 1988) but higher than that reported by Persad & Khan (2002) for N. bisignatus and N. includens.

Estimates of the models’ parameters and coefficients of non-linear regression (R²) were obtained with statistical packages JMP v.4.0.2 (SAS, 1989) and SPSS v.9.0.0 (SPSS, 1999).

Two mathematical models were used to fit the data on fecundity:
1. The Enkegaard equation: \(F = (a + b \cdot x) \cdot e^{c(x-d)} \) (Enkegaard, 1993).
2. The Analytis equation: \(F = a \cdot (x-x_{min})^p \cdot (x_{min}-x)^m \) (Analytis, 1974, 1977, 1980; Kontodimas et al., 2004), where \(F \) is the fecundity, \(x \) are the days after emergence, \(a, b, c, d, q, x_{min}, x_{max}, n, m \) parameters and \(e = 2.178 \).

The Weibull frequency distribution was used to describe the age specific survival of female adults. The probability that an individual lives at least to time \(t \) was calculated following Deevey (1947), Pinder et al. (1978), Tingle & Copland (1989) and Wang et al. (2000): \(S(t) = e^{(c(t-d))} \), for \(t > 0 \) where \(b \) is a scale parameter that is inversely related to the mortality rate (ie, larger \(b \) value indicates slower decline of the population) and \(c \) is a shape parameter that allows the model to produce survival distributions of different forms, from exponential to an extreme inverted S shape. Values of the shape parameter \(c > 1 \), \(c = 1 \) or \(c < 1 \) correspond to Deevey’s (1947) type I, II or III survivorship curves, respectively (Pinder et al., 1978).

The values of the parameters of the Analytis and Enkegaard models fitted to the data for N. includens and N. bisignatus are presented in Figs 2 and 3 and the values of subsequent tables.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>15°C</th>
<th>20°C</th>
<th>25°C</th>
<th>30°C</th>
<th>32.5°C</th>
<th>35°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. includens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enkegaard equation (F = (a + b \cdot x) \cdot e^{c(x-d)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>-1.4494</td>
<td>-0.8606</td>
<td>-0.4189</td>
<td>-0.1422</td>
<td>-0.0490</td>
<td>-0.0544</td>
</tr>
<tr>
<td>(b)</td>
<td>0.0665</td>
<td>0.0771</td>
<td>0.1846</td>
<td>0.0387</td>
<td>0.0118</td>
<td>0.0125</td>
</tr>
<tr>
<td>(c)</td>
<td>-1.1245</td>
<td>-1.2111</td>
<td>-1.2156</td>
<td>-2.3972</td>
<td>-3.2682</td>
<td>-3.5749</td>
</tr>
<tr>
<td>(d)</td>
<td>0.0411</td>
<td>0.0480</td>
<td>0.0764</td>
<td>0.0726</td>
<td>0.0661</td>
<td>0.0938</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.4293</td>
<td>0.7501</td>
<td>0.9548</td>
<td>0.7534</td>
<td>0.6989</td>
<td>0.6297</td>
</tr>
<tr>
<td>RSS</td>
<td>5.7820</td>
<td>7.2077</td>
<td>5.2818</td>
<td>7.6727</td>
<td>4.9999</td>
<td>3.9593</td>
</tr>
<tr>
<td>Analytis equation (F = a \cdot (x-x_{min})^p \cdot (x_{min}-x)^m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p)</td>
<td>0.1943 \times 10^{-10}</td>
<td>0.1564 \times 10^{-3}</td>
<td>0.4203 \times 10^{-6}</td>
<td>0.1662 \times 10^{-1}</td>
<td>0.9668 \times 10^{-4}</td>
<td>0.1427 \times 10^{-2}</td>
</tr>
<tr>
<td>(x_{max})</td>
<td>23.0013</td>
<td>17.0021</td>
<td>4.9757</td>
<td>5.9522</td>
<td>5.3796</td>
<td>7.9372</td>
</tr>
<tr>
<td>(m)</td>
<td>0.5802</td>
<td>0.3101</td>
<td>0.1923</td>
<td>0.2604</td>
<td>0.6388</td>
<td>0.2246</td>
</tr>
<tr>
<td>(n)</td>
<td>4.3973</td>
<td>1.8400</td>
<td>3.2941</td>
<td>3.7543</td>
<td>2.7292</td>
<td>1.6743</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.4241</td>
<td>0.8393</td>
<td>0.9587</td>
<td>0.7536</td>
<td>0.6809</td>
<td>0.6320</td>
</tr>
<tr>
<td>RSS</td>
<td>5.6799</td>
<td>3.2129</td>
<td>2.8179</td>
<td>7.4036</td>
<td>5.1083</td>
<td>3.6718</td>
</tr>
<tr>
<td>N. bisignatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enkegaard equation (F = (a + b \cdot x) \cdot e^{c(x-d)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>-3.9781</td>
<td>-0.4657</td>
<td>-0.0653</td>
<td>-0.1173</td>
<td>-0.0683</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>0.1780</td>
<td>0.0475</td>
<td>0.0355</td>
<td>0.0578</td>
<td>0.0147</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>0.4192</td>
<td>-0.4376</td>
<td>-1.6212</td>
<td>-0.2671</td>
<td>-1.9440</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>0.0333</td>
<td>0.0306</td>
<td>0.0504</td>
<td>0.0383</td>
<td>0.0568</td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.6534</td>
<td>0.7050</td>
<td>0.79939</td>
<td>0.4754</td>
<td>0.5195</td>
<td></td>
</tr>
<tr>
<td>RSS</td>
<td>4.3339</td>
<td>2.5592</td>
<td>3.6085</td>
<td>2.8634</td>
<td>1.2330</td>
<td></td>
</tr>
<tr>
<td>Analytis equation (F = a \cdot (x-x_{min})^p \cdot (x_{min}-x)^m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p)</td>
<td>1.8740 \times 10^{-1}</td>
<td>1.3201 \times 10^{-4}</td>
<td>2.0744 \times 10^{-4}</td>
<td>0.0448</td>
<td>0.0089</td>
<td></td>
</tr>
<tr>
<td>(x_{max})</td>
<td>29.4975</td>
<td>21.0000</td>
<td>4.9452</td>
<td>8.9900</td>
<td>6.9457</td>
<td></td>
</tr>
<tr>
<td>(m)</td>
<td>193.9480</td>
<td>189.2699</td>
<td>110.0528</td>
<td>97.0369</td>
<td>74.5461</td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td>0.4456</td>
<td>0.1079</td>
<td>0.3126</td>
<td>0.0875</td>
<td>0.2311</td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td>2.7602</td>
<td>1.6363</td>
<td>1.7119</td>
<td>0.5595</td>
<td>0.8399</td>
<td></td>
</tr>
<tr>
<td>RSS</td>
<td>0.6776</td>
<td>0.7377</td>
<td>0.7735</td>
<td>0.4749</td>
<td>0.5010</td>
<td></td>
</tr>
<tr>
<td>RSS</td>
<td>3.8887</td>
<td>2.0879</td>
<td>4.8254</td>
<td>2.4862</td>
<td>1.1778</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 4. Survival of *Nephus includens* and *Nephus bisignatus* at different constant temperatures fitted using the Weibull function.

| Table 3. Values of the Weibull parameters $S(t) = e^{-\frac{t}{b}}$.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>15°C</th>
<th>20°C</th>
<th>25°C</th>
<th>30°C</th>
<th>32.5°C</th>
<th>35°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. includens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>112.9614</td>
<td>98.0543</td>
<td>78.4127</td>
<td>71.2303</td>
<td>58.7081</td>
<td>35.5751</td>
</tr>
<tr>
<td>c</td>
<td>2.4175</td>
<td>3.0638</td>
<td>4.1966</td>
<td>2.8617</td>
<td>2.3469</td>
<td>1.9733</td>
</tr>
<tr>
<td>R²</td>
<td>0.9929</td>
<td>0.9772</td>
<td>0.9771</td>
<td>0.9532</td>
<td>0.9628</td>
<td>0.9556</td>
</tr>
<tr>
<td>RSS</td>
<td>0.1382</td>
<td>0.2716</td>
<td>0.1923</td>
<td>0.3820</td>
<td>0.2427</td>
<td>0.2111</td>
</tr>
<tr>
<td>N. bisignatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>133.5318</td>
<td>125.4435</td>
<td>83.7265</td>
<td>79.5416</td>
<td>50.9824</td>
<td>133.5318</td>
</tr>
<tr>
<td>c</td>
<td>2.2264</td>
<td>3.4027</td>
<td>2.6717</td>
<td>3.1422</td>
<td>1.7921</td>
<td>2.2264</td>
</tr>
<tr>
<td>R²</td>
<td>0.9917</td>
<td>0.9722</td>
<td>0.9890</td>
<td>0.9698</td>
<td>0.9776</td>
<td>0.9917</td>
</tr>
<tr>
<td>RSS</td>
<td>0.1539</td>
<td>0.4003</td>
<td>0.1132</td>
<td>0.2522</td>
<td>0.1445</td>
<td>0.1539</td>
</tr>
</tbody>
</table>
Enkegaard and Analytis parameters in Table 2. Both models gave a satisfactory fit at 20, 25 and 30°C for *N. includens* and 20 and 25°C for *N. bisignatus*, respectively, for which the data were less variable than at the other temperatures. The coefficient of nonlinear regression (R^2) and the residual sum of squares (RSS) were used as criteria of goodness of fit. The higher the R^2 and lower the RSS the better the fit (Kontodimas et al., 2004).

The description of the age specific survival of female adults (l_x) using the Weibull frequency distribution is presented in Fig. 4 and the values of the Weibull parameters in Table 3. In both species it is a type I survival curve, as parameter c is >1 (Tingle & Copland, 1989; Wang et al., 2000). Using mathematical models to describe the reproductive capacity and survival enables one to compare data with similar average values, which differ in their temporal distribution (Tingle & Copland, 1989).

The fact that both species showed an increase in the sex ratio favouring females at temperatures close to their lower and upper thresholds (Kontodimas et al., 2004) is an important advantage of the survival of the species at these temperatures. Summaries of the life tables for each species and temperature are presented in Tables 4 and 5, and the life table parameters calculated for each species in Table 6. Differences between the species in the adaptation to temperature are indicated by their intrinsic rates of natural increase (r_m). As expected, life table parameters were sensitive to temperature in both species. Neverthe-
less, *N. includens* performed better than *N. bisignatus* in almost all cases except 15°C. The highest net reproductive rate (\(R_0\)) was recorded at 25°C in *N. includens* (60.7 females/female) and the highest intrinsic rate of increase (\(r_m\)) at 30°C. The respective values in *N. bisignatus* were recorded at 25°C. The higher value of \(r_m\) for *N. includens* at temperatures between 25–32.5°C is due to the greater survival of immature stages, which indirectly influence net reproductive rate (\(R_0\)) (Persad & Khan 2002). Reproductive value (\(V_x\)) for both species was highest at 25°C, with seven day old females of *N. includens* having an expected remaining life time (\(E_x\)) of 55 days, and twelve day old females of *N. bisignatus* an expected remaining life time (\(E_x\)) of 59 days. However, in *N. includens* the reproductive value (\(V_x\)) remained at a high level (>15 females/female) until the 25th day of their life and 20th day in *N. bisignatus*. Life history parameters need to be determined in the laboratory, which usually involved rearing them under constant conditions, despite the fact that insects are subjected to more complex and fluctuating conditions in their natural environment. Nevertheless, life tables remain a very useful tool for evaluating the effectiveness of natural enemies for controlling pests under various climatic conditions and in different habitats (Birch 1948; Jervis & Copland 1996). The parameter \(r_m\) is of especial interest because it integrates the effects of mortality and fertility in a single value.

In inundative releases of a biological control agent, its reproductive value (\(V_x\)) and expected remaining life time (\(E_x\)) are important. Probably the best time to release an agent is at its maximum reproductive value. Our results show that this occurs in early summer in central Greece. On the other hand, a release at the end of summer should consider whether the expected remaining life time (\(E_x\)) of the natural enemy is sufficiently long for it to become established over winter. Maximum value of \(V_x\) also was recorded for newly emerged adults or 15 day old adults. The biological meaning of this result is that these individuals will produce more progeny in the next generation than their co-specics of other age classes. Thus, it is concluded that newly emerged adults are the ideal individuals for release.

A comparison of the population parameters (\(R_0, r_m, T, DT\)) indicates that *N. includens* is capable of developing high populations in temperatures ranging between 20–32.5°C. Temperatures 15–20°C are considered to be more suitable for “storage” of *N. includens*, based on the reproductive value (\(V_x\)) and expected remaining life time (\(E_x\)). The results of the current study provide information that will help facilitate the more effective control of mealybug pests by these coccinellid predators. The above results, in combination with data on development at constant temperatures and on their predatory activity (Kontodimas, 2004; Kontodimas et al., 2004), shows that *N. includens* could be an effective predator of *P. citri*, at least, in warm, southern temperate regions.

REFERENCES

ENKEGAARD A. 1993: The poinsettia strain of the cotton whitefly,
Bemisia tabaci (Homoptera; Aleyrodidae), biological and
demographic parameters on poinsettia (Euphorbia pulcher-
rima) in relation to temperature. Bull. Entomol. Res. 83:
535–546.

FRANCARDI V. & COVASSI M. 1992: Note bio-ecologishe sul Pla-
nococcus novae (Nasonov) dannoso a Juniperus spp. in Tos-

IKHANSKI S.S. & ORLINSKI A.D. 1988: Life history of the
imported Scymnus (Nephus) reunioni (Col.: Coccinellidae)

LYSYK T.J. 2001: Relationship between temperature and life his-

LIU T.X., STANSLY P.A., HOELMER K.A. & OSBORNE L.S. 1997:
MAGRO A. & HEMPTINNE J.L. 1999: Coccinellids
(Coleoptera: Coccinellidae) in citrus groves in Portugal:

KATSOYANNOS P. 1996: Integrated Insect Pest Management for
Citrus in Northern Mediterranean Countries. Benaki Phyto-
pathological Institute, Athens, 100 pp.

KONTODIMAS D.C. 1997: First record of the predatory insect
Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) in

KONTODIMAS D.C. 2004: Study on Ecology of Nephus includens
(Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coc-
cinellidae) Natural Enemies of Planococcus citri (Risso)

KONTODIMAS D.C., ELIPOULOS P.A., STATHAS G.J. & ECONOMOU
L.P. 2004: Comparative temperature-dependent development of
Nephus includens (Kirsch) and Nephus bisignatus (Bohe-
man) (Coleoptera: Coccinellidae), preying on Planococcus citri
(Risso) (Homoptera: Pseudococcidae): Evaluation of a
linear and various non-linear models using specific criteria.
Envir. Entomol. 33: 1–11.

LIU T.X., STANSLY P.A., HOELMER K.A. & OSBORNE L.S. 1997:
Life history of Nephaspis oculatus (Coleoptera: Coci-
cinellidae) a predator of Bemisia tabaci (Homoptera: Aleyro-

LONGO S. & BENFATTO D. 1987: Coleotteri entomofagi presenti

LYNKK T.J. 2001: Relationship between temperature and life his-
tory parameters of Muscidifurax raptor (Hymenoptera:
Pteromalidae). Envir. Entomol. 30: 147–156.

MAGRO A. & HEMPTINNE J.L. 1999: The pool of Coccinellids
(Coleoptera: Coccinellidae) to control Coccids (Homoptera:

MAGRO A., ARAUJO J. & HEMPTINNE J.L. 1999: Coccinellids
(Coleoptera: Coccinellidae) listing and analysis of geographical distribution. Bol. Sanid.

MIDJERGER E.S. 1964: Use of life tables in a bioclimatic study of
an experimental aphid-braconid wasp host-parasite. System.
Ecol. 45: 119 131.

PERSAD A. & KHAN A. 2002: Comparison of life table param-
ters for Macanellisococcus hirsutus, Anagyrus kamali, Crypto-
laemus montrouzieri and Scymnus coccivora. BioControl 47:
137–149.

PINDER J.E., WIENER J.G. & SMITH M.H. 1978: The Weibull dis-
tribution: a new method of summarizing survivorship data.

POPE R.D. 1973: The species of Scymnus (s.str.), Scymnus (Pul-
lus) and Nephus (Col., Coccinellidae) occurring in the British Isles.

SAS INSTITUTE 1989: JMP, A Guide to Statistical and Data
Analysis, v. 4.0.2. SAS Institute Inc., Cary, NC.

SOUTHWOOD T.R.E. 1966: Ecological Methods, with Particular
Reference to the Study of Insect Populations. Methuen, Lon-
don, xvii + 391 pp.

SPSS 1999: SPSS 9 for Windows, User's Guide. SPSS Inc. Chi-
cago, IL.

SUZER T., AYTAS M. & YUMUKTEPE R. 1992: Chemical experi-
ment on citrus white fly (Dialeurodes citri Ashmead), citrus
red mite (Panonychus citri Mc. Gregor) and citrus rust mite
(Phyllocoptura oleivora Ashmead) in the Mediterranean
region. Zirai Mucadele Arastirma Yilligi (Turkey) no. 22–23,
pp. 61–63. [In R.A.E., Series A, 1995-111-2395].

TINGLE C.C.D. & COPLAND M.J.W. 1989: Progeny production and
adult longevity of the mealybug parasitoids Anagyrus
pseudococci, Leptomastix dactylopii and Leptomastidea
abnormis (Hym.: Encyrtidae) in relation to temperature. Ento-
morphaga 34: 11–120.

TRAFAGLIA A. & VIGGIANI G. 1972: Dati biologici sullo
Scymnus includens Kirsch (Coleoptera: Coccinellidae). [Bio-

dological data on Scymnus includens Kirsch (Coleoptera: Coc-
cinellidae)] Boll. Lab. Entomol. Agraria “Filippo Silvestri”
Portici 30: 9–18.

IOBC/WPRS Bull. 3: 117–120.

WANG J.J., TSAI J.H., ZHOU Z.M. & LI L.S. 2000: Development and
reproduction of the psocid Liposcelis bostrychophila
(Pscoptera: Liposcelididae) as a function of temperature.

Received November 6, 2006; revised and accepted April 2, 2007

415