DONATHORPE 1935 (fungus hosts).
GARDNER 1931b.
GORMAN 1887.
HAYASHI ET AL. 1959 (larvae of Ancylopus melanocephalus
Oliver), Endomychus gorki Lewis, Lycoperdina
mandarinaa Gertstaecker, and L. dux Garman).
HINTON 1943b (stored products species).
KEMPER 1924 (larva of Trochides termitophilus Roepke).
Kippel 1952 (larva of M. hirta).
LAWRENCE 1932.
MANUZEN 1977 (larva of Agaricus rufescens Motschulsky).
PAKUL 1954 (larva and biology of Lycoperdina ferruginea).
PETERSON 1951 (larvae of Endomychus biguttatus and Lycoperdina
ferruginea).
SASAJI 1971, 1978a (larva of Mycetophagus asiaticus Sasaji),
1978b (larva of Saule japonica).
SEN GUPTA AND CROWSON 1973 (position of Eidoreus).
SILVESTRI 1912 (larva of Colocera formicaria Motschulsky).
STROEBER 1953.
VERHOEFF 1923 (larva of M. hirta).
WEISS AND WEST 1920 (fungus hosts).

COCCINELLIDAE (CUCUJOIDEA)

Laurent LeSage, Biosystematics Research Centre, Agriculture Canada

The Lady Beetles, Lady Birds

Figures 34.570–624

Relationships and Diagnosis: The Coccinellidae, commonly
known as ladybird beetles, belong to the superfamily Cucujoidea, and are closely related to the Endomychidae and Corylophidae (van Emden 1949; Crowson 1955). There are about 490 genera and 4000 world species (Sasaji 1971) of
which about 425 are known from the United States and
Canada. Coccinellidae larvae usually have a reduced mola on
the mandible (absent in Epilachninae) (figs. 34.593–599),
a gular area between the labium and the thorax (fig. 34.586),
and the median epicranial stem (coronal suture) is absent
in most genera (figs. 34.583–585). The most distinctive
characteristics of coccinellid larvae are a great development
of the body armature into setose processes in most tribes, a
campodeiform and usually brightly colored body, and
mandibles of a predaceous type in most tribes (acute at apex).
Except in Epilachnini and Psyllioborinini, they are usually very
active predators.

Many galerucine and some alticinace larvae in the Chrysomalidae superficially resemble larvae of coccinellids. How-
ever, chrysomelid larvae have short legs, none or only one pair of
stemmata, no setose processes on the body (rarely with
processes covered by fine setae) and the mandibles lack a mola,
whereas coccinellid larvae which may be mistaken for chry-
somelid larvae have long legs, 3 pairs of stemmata, large setose
body processes covered by robust setae, and a mandibular
mola.

Biology and Ecology: It is not possible to treat here in
detail the biometrics and ecology of Coccinellidae. See the
excellent reviews by Balduf (1935), Hagen (1962), and Hodek

The eggs, usually oval or spindle-shaped, vary in colour
from yellowish to reddish orange, and are mostly laid in
clusters on the underside of leaves or in bark crevices in the
vicinity of prey.

In general, there are 4 larval instars which last about 10
days each, but with great variation according to species and
ecological factors. A unique feature among coccinellid larvae
is the presence of secretory structures that produce a visible
coating of waxy threads in the larvae of several tribes; these
probably have primarily a defensive role against predators
(Pope 1979). Cannibalism is frequent in coccinellid larvae
and increases the chances of survival when there is a very low
density of prey (Hodek 1973; Dimetry 1976). Larvae per-
ceive their prey only by contact (Fleschner 1950; Putman
With the development of biological control programs, at-
ttempts have been made to rear larvae on artificial diets or
dried food. Several recent experiments gave excellent results
(Smith 1960; Fisher 1963; Shands et al. 1966; Hodek 1973
review); Karluoto 1980).

Different types of pupae occur in Coccinellidae. Coccin-
ellinae and Sticholotini have naked pupae attached by the
cauda to the substrate. Pupae of the Chiloichorini and Novini
are partly covered by the skin of the last larval instar, and the
Hyperaspinini and Scymnini have pupae completely cov-
ered by larval skins. The pupa is not entirely immobile; if
irritated, the head region is raised several times by upward
jerks of the body.

The number of generations varies greatly according to
species and latitudes; types of volitism were summarized by
Hagen (1962). Perhaps the most fascinating phenomenon
coccinellid adults display is the formation of aggregations.
Species involved usually feed mostly on aphids, exhibit long
dormancy or diapause periods, and mate at the aggregation
site before the beetles disperse or migrate (Hagen 1962;

The role of coccinellids in natural control has been dem-
onstrated many times. Various interrelated factors affect the
ability of coccinellids to check pest infestations. However, it
seems that the most important factor involved, temperature,
was probably also the most neglected in theories of insect pre-
dation (Baumgaertner et al. 1981).

Since the biometrics, general habitus and food prefer-
ence are generally distinctive for each tribe, a key to tribes
is presented below, followed by a short synopsis of each tribe.

Body Armature: Gage's terminology (Gage 1920) is
generally followed for different structures on the body of
larvae. A seta (fig. 34.610) is situated directly on the body
surface; a chalaza is a seta mounted on a small base (fig.
34.611). A verruca or tubercle is a small protuberance cov-
ered by setae instead of chalazae (fig. 34.612). A struma ap-
pears to be a mound-like projection of the body-wall upon
which are situated a few chalazae (fig. 34.613). A parascolus
(fig. 34.614) is an elongate process covered by chalazae, but
less than 3 times as long as wide. A scolus (fig. 34.616) is a
branched projection, usually more than 5 times as long as wide;
each branch bears at its distal end a single stout seta. A zentus
(fig. 34.615) is a projection of the body-wall which is not
branched like a scolus but bears stout setae on its trunk.
Larvae may have structures intermediate between scoli, senti,
parascoli or strumae.
KEY TO TRIBES OF NORTH AMERICAN LARVAE OF COCCINELLIDAE

1. Body with scoli (figs. 34.570, 34.616); mandible without mola (fig. 34.597) .................................................. Epilachnini

Body without scoli (figs. 34.572–34.575); mandible with mola (figs. 34.593–34.596) ........................................... 2

2(1). Epicranial suture present (figs. 34.582, 34.583, 34.585) ................................................................. 3

Epicranial suture absent (fig. 34.584) .............................................................................................................. 11

3(2). Epicranial suture V-shaped (fig. 34.585) ............................................................................................... 4

Epicranial suture U-, Y-, or lyre-shaped (figs. 34.582, 34.583) ............................................................... 6

4(3). Antennae large, conspicuous, second and third segments elongate (fig. 34.600) ........................................... Scymnini

Antennae small, inconspicuous, second and third segments short (fig. 34.585) .................................................. 5

5(4). Mature larvae small, less than 3 mm (fig. 34.575); tibiotarsi with a pair of apical flattened setae (fig. 34.618); maxillary palps 3-segmented (fig. 34.608) ......................................................... Sticholotini

Mature larvae larger, more than 6 mm (fig. 34.574); tibiotarsi with several apical clavate setae (fig. 34.617); maxillary palps 2-segmented (fig. 34.609) ................................................................. Noviini

6(3). Pores of repugnatorial glands present in the coria between abdominal segments on the antero-lateral margin (fig. 34.587); body always with long seti (figs. 34.587, 34.615) .............................................. Chilochorini

Pores of repugnatorial glands absent, body usually with strumae (fig. 34.613) or parascoli (fig. 34.614), rarely with seti (fig. 34.615) ................................................................. 7

7(6). Apex of mandible simple (fig. 34.594) ........................................................................................................ 8

Apex of mandible bidentate (figs. 34.596, 34.599) ....................................................................................... 10

8(7). Body densely covered with fine hairs and long setae (fig. 34.624); tibiotarsi slender and narrowing apically ................................................................. Serangini

Body covered with few large setae located on tubercles or strumae (figs. 34.623, 34.573); tibiotarsi short, stout, and truncated apically (fig. 34.588) ................................................................. 9

9(8). Three pairs of conspicuous, pigmented, sclerotized plates (strumae) on abdominal segments 1–8 (fig. 34.623); body not covered by wax-like secretions .............................................. Stethorini

Three pairs of inconspicuous, not pigmented, tubercles on abdominal segments 1–8; body covered by wax-like secretions ...........................................................(in part) Scymnini

10(7). Few large chaetae on disk or posterior margin of abdominal segment 9 (fig. 34.622); body dull yellowish; third antennal segment always well-developed and cupula-like (fig. 34.602) ......................................................... Coccidulini

Numerous setae and/or small chaetae on abdominal segment 9 (fig. 34.621); body brightly colored with black, brown, red, yellow or orange; third antennal segment usually much reduced, antenna appearing 2-segmented (fig. 34.606) .......................................................... Coccinellini

11(2). Apex of mandible multidentate (fig. 34.595); body without wax-like secretions ................................... Psyllborini

Apex of mandible simple (fig. 34.594); body covered with wax-like secretions .............................................. 12

12(11). Labial palp very small, dome-shaped, 1-segmented (fig. 34.592) .......................................................... Hyperaspini

Labial palp normal, 2-segmented (fig. 34.591) .............................................................................................. (in part) Scymnini

**Tribal Information**

Unlike other coccinellids, the Epilachnini (Epilachninae) have an unusual porcupine-like appearance (fig. 34.570), and are phytophagous. Furthermore, in this tribe the mandible (fig. 34.597) lacks a mola and has a multidentate apex. *Epilachna borealis* (Fabricius), the squash beetle, attacks squash and pumpkins, and *E. varivestis* (Mulsant), the Mexican bean beetle, is a serious pest of beans including soybeans (Guyon & Knell 1925). The European alfalfa beetle, *Subcoccinella vigintiquatrupunctata* (L.) was discovered in 1972 in Pennsylvania (Anonymous 1974). While an important pest of alfalfa and clover in Europe, it has been found feeding only on bouncing bet, *Saponaria officinalis*, cam- pion, *Lychnus alba*, and oatgrass, *Arrhenatherum elatius* in the United States (Anonymous 1974).

Chilochorini (Chilochorinae) superficially resemble Epilachnini when senti are well-developed as in *Chilothorax* (fig. 34.571), or some Coccinellini when senti are more reduced. However, the presence of large pores of repugnatorial glands (fig. 34.587) on the abdomen will separate them easily from both. Chilochorini feed primarily on aphids and scales, therefore are used for biological control (Huffaker & Doutt 1965). For example, *Exochomus flavipes* Thunberg, indigenous to South Africa (Geyer 1947a, 1947b), was successfully used in the United States against mealybugs infesting commercial...
greenhouses (Doutt 1951). *E. quadripustulatus* (L.) was released against the woolly aphid *Adelges piceae* (Ratz.). The twice-stabbed lady beetle, *Chilocusus stigma* (Say), is an important predator of the Florida red scale, *Chrysomphalus aonidum* (L.) which infests citrus groves (Muma 1955a, 1955b).

Coccinellini (Coccinellinae) are the best known coccinellid larvae because they live exposed, are very active, relatively large, and brightly coloured. The body armature is very diverse in this tribe (figs. 34.572, 34.579–34.581) and all structures are represented except scoli. These larvae can be distinguished from those of other tribes by the lyre-shaped epicranial suture of the head (fig. 34.583), the bidentate apex of the mandible (fig. 34.599), the reduced, inconspicuous third antennal segment (fig. 34.606) and the well-developed body armature. All native Coccinellini are beneficial and several foreign species have been introduced to aid in control of pests (DeBach 1964; Hodek 1967, 1973). Some species are widely distributed and well known. *Anatis mali* (Say), the eye-spotted lady beetle, bears senti on the body similar to fig. 34.580, and occurs on conifers where it is able to survive at low prey densities (Smith 1965; Watson 1976). The spotted ladybird, *Coleomegilla maculata* (De Geer) (fig. 34.621), eats pollen as well as aphids and is usually found on herbaceous plants, wild and cultivated, where its food is abundant (Smith 1965). *Hippodamia* species are important aphid predators (Cuthright 1924; Hodek 1973) and a common species, *Hippodamia convergens* Guérin, the convergent lady beetle (fig. 34.579), can keep aphids in check in alfalfa fields (Cook 1963). *Adalia bipunctata* (L.) (fig. 34.581), the 2-spotted ladybird, is a widespread polymorphic species (Hodek 1973) which prefers trees above 2 m. Consequently, it is especially beneficial in orchards and groves where it is the most important coccinellid aphid predator (Smith 1958; Putman 1964; Hodek 1973). *Coccinella* species (fig. 34.572) are known as aphid predators (Palmer 1914; Clausen 1916; McMullen 1967), and some have become established after repeated releases over large areas; others like *C. undecimpunctata* L., are becoming well established on their own, along with the aid of man's commerce (Watson 1979; Wheeler & Hoebaek 1981).

Coccidulini (Coccidulinae) much resemble Coccinellini but differ by the features of the last abdominal segment (fig. 34.622) and antenna (fig. 34.602), their dull coloration, and the presence of a thin powdery coating of wax (Pope 1979). Their biology is not well known. *Coccidula* live in wet habitats. *Rhyzobius ventralis* (Erichson) has been introduced from Australia to California and Hawaii for control of scale insects (Pope 1981; Richards 1981).

Seymmilli and Hyperaspini larvae are strikingly different from others because of their thick coating of wax (fig. 34.577) which is absent or inconspicuous in other tribes.

Seymmilli (Seymmiinae) larvae have very sharp undentate mandibles (fig. 34.594) and very small tubercles on the abdomen (fig. 34.573). *Seymmus* species feed mainly on aphids; some are useful predators in red pine plantations (Gagné & Martin 1968), cotton fields (Davidson 1921b) or sugarbeet fields (Buntin & Tamaki 1980); others attack psyllids and are beneficial in pear orchards (Westigard et al. 1968) while a few feed on mealybugs in citrus groves (Muma 1955a), or on phylloxera on wild grape (Wheeler & Jubb 1979).

Hyperaspini (Seymminae) larvae are separated from all others by the unique dome-shaped, 1-segmented labial palps (fig. 34.592). *Hyperaspis* (figs. 34.576, 34.577) species are known as efficient predators of scale insects (Simanton 1916; Boving 1917; Phillips 1963).

Novini (Coccidulinae) is the only tribe where the larvae have only 2 pairs of sclerotized tubercles and 1 pair of soft lateral projections on the abdominal segments (fig. 34.574). *Rodolia cardinalis* Mulsant, the vedalia lady beetle, is a famous classic example of successful use of coccinellids in biological control of coccids (DeBach 1964).

Psylloborini (Coccidulinae) larvae are immediately recognized by the multidentate apex of their mandibles (fig. 34.595). They differ from other tribes in that they are mycophagous and feed on mildew. They are beneficial because they eat destructive fungi (Davidson 1921a).

Larvae of the 4 remaining tribes are usually overlooked because of their small size. *Microweisea* larvae (fig. 34.575) in the tribe Sticholotini (Sticholotinae) are easily identified by the 2 large flattened setae at the apex of the tibiae (fig. 34.618). They are beneficial scale feeders (Burgess & Collins 1912; Muma 1955a; Sharma & Martel 1972).

Serangini (Sticholotinae) larvae have the body densely covered with fine setae (fig. 34.624) and their tibiae are unusually slender (fig. 34.590), characters which distinguish them from all others. *Delphastus* species in this tribe are predators of Aleurodidae (Muma 1955a, 1955b).

Sethorini (Seymminae) larvae resemble superficially the Serangini but are separated from them and all other tribes by the few large setae fixed on small tubercles covering the body (figs. 34.578, 34.623) and their short tibiae, apically truncated (fig. 34.588). They feed chiefly on mites, and many *Sethorus* species are active predators of these pests (Fleschner 1950; Robinson 1953; Putman 1955a, 1955b; Putman & Herne 1966; Tanigoshi & McMurry 1977).

Scymnillini (Coccidulinae) larvae are distinguished by their unusual, large, antennae (fig. 34.600). Their biology is poorly known. *Scymnillus aterrimus* Horn has been reported as an incidental predator of scale insects in citrus groves (Muma 1955b).

**Description:** Coccinellid larvae are extremely diverse as described in the previous section, and illustrated in the family key, where they key out at several couples. Therefore, they cannot be distinguished altogether by only 1 or 2 characters as in many beetle families. On the other hand, larvae of each tribe show a distinctive general habitus and have morphological features which are shared by all members of the tribe. The striking flattened larvae of the Palaeartic Platynaspini do not occur in North America.

**Head:** Hypognathous, usually rounded (fig. 34.582), sometimes elongate (fig. 34.585) as in *Microweisea*, or transverse as in Hyperaspini, Platynaspini, and some Scymnini (fig. 34.584). In most species, the head is completely sclerotized, but sometimes it may be partly or only very slightly sclerotized. The epicranial suture is usually distinct, V-shaped (fig. 34.585), Y-shaped (fig. 34.582), lyre-shaped (fig. 34.583), or absent (fig. 34.584) but the epicranial stem is usually absent.
The antenna of the typical form of coccinellid larvae consists of 3 sclerotized segments (figs. 34.600, 34.602, 34.603), and bears a large spine-like seta on the membranous apical area of the second segment. However, they may appear to be 2-segmented (figs. 34.601, 34.605, 34.606) or even 1-segmented (fig. 34.604) when the third, and sometimes the second and third segments are reduced and not sclerotized; in those cases the homology of the segments apparently missing is often difficult to establish (Sasaji 1968b). The labrum is distinct and transverse (fig. 34.582).

The mandible is either apically simple and acute (figs. 34.593, 34.594), bidentate (figs. 34.596, 34.599), or multi-
dentate in plant feeders (figs. 34.595, 34.597); the mola is usually present but reduced (figs. 34.595, 34.596 34.598, 34.599), highly reduced in *Microweisia* (fig. 34.593) and absent in *Epilachna* (fig. 34.597); a retinaculum may be either absent (figs. 34.593, 34.594), developed with 1 tooth (fig. 34.596), or multidentate (fig. 34.595). The maxillary palps are generally 3-segmented, but are 2-segmented in *Noviini* (fig. 34.609). The labial palps are either 1- or 2-segmented (figs. 34.591, 34.592). The labium has the submentum fused with the ligula (fig. 34.586).

**Thorax and Abdomen:** Pronotum with 2 or 4 plates. Mesos- and metanotum each with 2 plates and distinct armature. Legs usually long and slender (figs. 34.589, 34.590), short in *Hyperaspini* and *Stethorini* (fig. 34.588), consisting of 5 segments (coxa, trochanter, femur, tibia and claw-like tarsus). Tarsus curved (fig. 34.620), with a robust quadrangular tooth in some species (fig. 34.619). The apex of the tibiae usually bears clavate or flattened setae which are important in taxonomy (figs. 34.588, 34.617, 34.618).

Abdomen 10-segmented, widest basally, tapering to caudal end, dorsally with distinct armature, usually characteristic for each tribe. The tenth segment may be modified as a proleg or a sucking disk. Pores of repugnatorial glands may occur on each anterolateral margin of terga in the corium between segments (fig. 34.587).

**Spiracles:** Small, annular, and located on abdominal segments 1–8 (fig. 34.587).

**Comments:** The larval stage of most coccinellid species consists of 4 instars. The first instar can be recognized by the paired egg-bursts on pronotum, and differences in proportions in size of head, abdomen, legs, setae, etc. Changes occur in coloration, proportions and armature of the body between successive instars. Larvae of the first and second instars are monochrome, with sclerotization and armature less developed than in older instars. Larvae of the third and fourth instars are usually brightly coloured and well sclerotized.

Palaearctic coccinellid larvae are now fairly well known with the recent contributions of several authors (van Emden 1949; Savoiskaya 1957, 1960, 1962, 1964a, 1964b; Kamiya 1965; Sasaji 1968a, 1968b; Klausnitzer 1970; Savoiskaya & Klausnitzer 1973). The taxonomy of the Nearctic coccinellid larvae has not been comprehensively studied; only the early works of Böving (1917) and Gage (1920) provide a general treatment of the family. With the field key of Storch (1970) one can identify the larvae of 5 common native species. Phuoc and Stehr (1974) studied the morphology and the phylogenetic relationships of coccinellid pupae based on their morphology and suggested the need for a similar study of the larvae.

**Selected Bibliography**

Balduf 1935.
Böving 1917. (key)
Buntin and Tamaki 1980.
Burgess and Collins, 1912.
Clausen 1916.
Cooke 1963.
Crowson 1953.
Cutright 1924.
Davidson 1921a, 1921b.
DeBach 1964.
Dimetry 1976.
Dixon 1959.
Doutt 1951.
Edmead 1949. (key)
Fisher 1963.
Fleschner 1950.
Gage 1920. (key)
Gagné and Martin 1968.
Geyer 1947a, 1947b.
Guyon and Knull 1925.
Hagen 1962.
Huffaker and Doutt 1965.
Kaddu 1960.
Kamiya 1965.
Karluoto 1980.
Klausnitzer 1970. (key)
Lee 1980.
McMullen 1967.
Muma 1955a, 1955b.
Palmer 1914.
Phuoc and Stehr 1974. (key, pupae)
Pope 1979, 1981.
Putman and Herne 1966.
Richards 1981.
Robinson 1953.
Savoiskaya and Klausnitzer 1973. (key)
Shands, Holmes and Simpson 1966.
Shands et al. 1972.
Sharma and Martel 1972.
Simanton 1916.
Storch 1970. (key)
Tanigoshi and McMurtry 1977.
Westgard et al. 1968.
Wheeler and Hoebeke 1981.
Figure 34.570. See also figures 34.597, 34.601, 34.616. Coccinellidae. Epilachna varivestis Mulsant. Mexican bean beetle. (Epilachnini) Length 11 mm; cyphosomatic, yellow, brownish around stemmata and tips of scolli; abdominal segments 1-6 each bearing 6 scolli; 4 scolli on prothorax, 8 on both meso- and metathorax; light slender setae on head, legs, and verrucae of all segments; 1 pair of verrucae on sternum of each thoracic and abdominal segment; 3 pairs on abdominal segments 2-7, 2 pairs on 8; caudal segment in the form of a sucker-like protuberance; spiracles inconspicuous, annular, and ventral of supraspiracular scolli. It can be a serious defoliator of many kinds of beans, including soybeans. Jerome, Idaho, 26-VII-1980, Gibson & Evans.

Figure 34.571. Coccinellidae. Chilocorus stigma (Say), two-stabbed lady beetle. (Chilocorini) Length = 5 ± mm. Cyphosomatic, oval, and covered with prominent setae; color brownish with most setae and pinacula near black, mid-dorsal line and dorsum of first abdominal segment yellow to near white; prothorax with 5 pairs of prominent setae, mesothorax and metathorax with 4 pairs of setae; pinacula of dorsal setae on abdominal segments 1-5 separated, contiguous on segments 6-8; all setae deep brown to near black except the yellow to near white dorsal and supraspiracular setae on the first abdominal segment; all abdominal segments with 3 pairs of setae except the eighth where lateral setae are wanting; 7 pairs of conspicuous, circular openings to glands are found in the coriace between abdominal segments 1-8; less conspicuous circular spiracles occur on the mesothorax and abdominal segments 1-6 cephaloventrad of the supraspiracular setae. Feeds on scale insects, especially soft bodied scales and immatures. (From Peterson, 1961)

Figure 34.572. Coccinellidae. Coccinella transversoguttata Feldermann. (Coccinellini) Transverse lady beetle, an aphid predator. Length = 11 mm. Fusiform with ground color bluish-gray, all processes on abdominal segments black except for lateral and dorsolateral ones on abdominal segments 1 and 4; basal portion of head black, labrum and frons cream to white; epicranial suture transverse, middle plates on prothorax separated by narrow yellowish stripe, sclerotized plates on both meso- and metathorax well-separated; dorsal and dorsolateral aspects of abdominal segments 1-6 each provided with parascolli or strumae, ventral aspect with verrucae or chalaza; legs well-developed, robust, and black; basal portion of claw with a distinct rectangular tooth. Ottawa, Ontario, 20-VIII-1980, on potatoes, L. LeSage.

Figure 34.573. Coccinellidae. Scymnus hemorrhois LeConte, a predator. (Scymnini) Length = 3 mm. Shape fusiform; head, body and legs yellowish; epicranial suture absent; prothorax transverse, ovoid, with a row of marginal setae; meso- and metathorax each with a pair of dorsal sclerotized tubercles and 2 pairs of lateral and moderately developed tubercles; abdominal segments 1-8 each with 3 pairs of weakly developed tubercles, each bearing a large seta and a few small setae; legs relatively short and rather stout. Baton Rouge, Louisiana, 15-VIII-1952, (reared), O.L.C.
Figure 34.574. Coccinellidae. Rodolia cardinalis (Mulsant) (Novi-Vilin). Vedalia lady beetle, a predator on the cottony-cushion scale, Icerya purchasi Raaschell. Length = 7 mm. Shape elliptical and weakly convex above; dorsum dark red with brown sclerotized plates and tubercles; head black, subquadrado; epicranial suture V-shaped; maxillary palpi 2-segmented; each thoracic segment with a pair of sclerotized plates, meso- and metathorax each bearing 2 additional pairs of soft lateral projections; abdominal segments 1-6 each with 2 pairs of dorsal plates and 1 pair of soft lateral projections bearing 2 long setae. Los Angeles, California, July 1982, D. V. Coquillett.

Figure 34.575. Coccinellidae. Micrathaesae sp. (Stilochotia). Length = 3 mm. Shape fusiform, yellowish throughout except the dark brown head; head elongate with a V-shaped epicranial suture; prothorax trapezoidal, meso- and metathorax transverse; lateral margin of each thoracic segment with a fringe of inconspicuous fine setae; legs well-developed; tibiotarsi with a pair of large flattened setae at the apex; abdominal segments 1-6 similar, but becoming successively smaller; bearing a few inconspicuous small setae. New Orleans, Louisiana, 13-VII-1923, Guantance.

Figures 34.576, 34.577. Coccinellidae. Hyperaspis signata Olivier. (Hyperaspis) Length = 5 mm. Cyphosomatic, greatest width near mid-abdominal region and entire dorsal aspect covered with a near white, cottony, wax covering; body cream to greenish color (may be pinkish in preserved specimens), head mottled brown and legs brown especially the 2 distal segments; numerous short, brown setae scattered over lateral and dorsal aspects of all segments and also on the head, only a few setae on venter of abdomen; legs small, well developed but not projecting beyond sides of body; caudal segment with an eversible sucking disk; inconspicuous circular spiracles on lateral aspects dorsal of lateral ridge. Larvae feed on mealybugs, and soft scales, especially immatures. (From Peterson, 1951).
Figures 34.578 and 34.5623. Coccinellidae. Stethorus punctum LeConte. (Stethorini) Length = 2.5–3 mm. Somewhat fusiform with greatest diameter in metathorax and first abdominal segments; light gray to light brown with brown to gray verrucae and brown to gray areas on thorax and head; head light brown laterally and mottled on frons; solid brown to mottled brown pigment areas lateral of the meson on all thoracic segments; 6 verrucae on the dorsal and lateral aspects of abdominal segments 1–8; numerous, light colored, elongate setae on the head, dorsum of thorax, on all verrucae and venter of the abdomen; well developed legs possess a few setae and are partially pigmented; spiracles circular and located ventral of supraspiracular verrucae. Feeds on plant-insecting mites, common on apple. (From Peterson, 1951)

Figure 34.579. Coccinellidae. Hippodamia convergens Guérin-Méneville, convergent lady beetle. (Coccinellini) Length = 10–11 mm. Somewhat fusiform, subcylindrical with greatest diameter in region of metathorax; dark brown to black with a bluish cast; light areas ranging from orange, to yellow to near-white; prothorax oval, wider than long and with 4 longitudinal dark areas with light yellow areas between, cephalad, and caudal of dark areas. Chalazae on the cephalic and lateral portions and on the pigmented areas; parascoli on caudalateral margin of metathorax cream colored; each abdominal segment 1–8 with 3 pairs of parascoli, subdorsal, supraspiracular and subspiracular, all deeply pigmented except the supraspiracular and subspiracular on the first and fourth abdominal segments and the subdorsal on the fourth segment; the light colored parascoli and the areas about them plus the areas between the subdorsal and supraspiracular parascoli on the 6th and 7th segments are yellow to deep orange; sterna on segments 2–8 with transverse rows of 6 verrucae; legs well developed, elongate and tarsal claws without appendiculate teeth. Feeds on aphids and soft bodied insects. (From Peterson, 1951)

Figure 34.580. Coccinellidae. Anatis quindeimpunctata Olivier. (Coccinellini) Length = 17–18 mm. Elongate, widest at metathorax and tapering toward both ends; color on dorsal half a deep brown except for light spots and median line, ventral half near white to yellow; head one-half diameter of prothorax, flattened, light on frontal area and dark on caudalateral portions; prothorax with parascoli on caudalateral margin and a light spot on the caudomeson bearing 2 chalazae; mesothorax and metathorax bearing 2 pairs of seti and 1 extreme, lateral pair of parascoli; abdominal segments 1–8 with 2 pairs of seti dorsal of the spiracles and 1 pair of seti of parascoli immediately ventral of spiracles; thoracic sterna similar, each bearing a pair of verrucae adjacent to the meson; thoracic legs long, slender, nearly 1.5 times as long as the metathorax is wide. Feeds chiefly on aphids. (From Peterson, 1951)

Figure 34.581. Coccinellidae. Adalia bipuncata (L.), two-spotted lady beetle. (Coccinellini) Length = 9 ± mm. Fusiform with greatest width in region of 2nd to 4th abdominal segments; dark brown to bluish-gray, mottled with yellow to cream spots, dorsal half of head deeply pigmented and ventral portion of frons and clypeus cream to white; prothorax with a medium yellow stripe and 2 cephalolateral yellow areas; each abdominal segment 1–8 with 2 pairs of strumae dorsal of the spiracles and 1 pair ventral; each struma may have 3–8 chalazae and additional setae; 2 of the lateral strumae on first abdominal segment cream to yellow, and on the fourth abdominal segment the most lateral strumae and the pair adjacent to the meson are light colored or yellow; ninth segment deeply pigmented, setiferous and giving rise to a large, eversible, fleshy protuberance. Feeds chiefly on aphids. (From Peterson, 1951)
Figure 34.582. Chilochorus cacti (L.), head capsule, dorsal. (Chilocorini)
Figure 34.583. Coccinella transversoguttata Faldermann, head capsule, dorsal. (Coccinellini)
Figure 34.584. Scymnus creperus Mulsant, head capsule, dorsal. (Scymnini)
Figure 34.585. Microweisea sp., head capsule, dorsal. (Sticholotini)
Figure 34.586. Hippodamia tridecimpunctata (L.), head capsule, ventral. (Coccinellini)

Figure 34.587. Chilochorus cacti (L.), third abdominal segment, lateral. (Chilocorini)
Figure 34.588. Stethorus histrio Chazeau, foreleg. (Stethorini)
Figure 34.589. Coccinella transversoguttata Faldermann, foreleg. (Coccinellini)
Figure 34.590. Deiphastus sonoricus Casey, foreleg. (Seranginini)
Figure 34.591. Scymnus collaris Meischm, labium. (Scymnini)
Figure 34.592. Hyperaspis binotata Say, labium. (Hyperaspini)

Figure 34.610. *Hipdomia tredecimpectata* (L.), seta. (Coccinellini)

Figure 34.611. *Hipdomia tredecimpectata* (L.), chalaza. (Coccinellini)

Figure 34.612. *Microweisea* sp., verruca. (Stilochotini)

Figure 34.613. *Coleomegilla maculata* (De Geer), struma. (Coccinellini)

Figure 34.614. *Coccinella transversoguttata* Faldermann, parascolus. (Coccinellini)

Figure 34.615. *Chilocharus cacti* (L.), sentus. (Chilorchorini)

Figure 34.616. *Epilachna varivestis* Mulsant, scolus. (Epilachnini)

Figure 34.617. *Rodolia cardinals* (Mulsant), apex of tibiotarsus. (Noviini)

Figure 34.618. *Microweisea* sp., apex of tibiotarsus. (Stilochotini)

Figure 34.619. *Coccinella transversoguttata* Faldermann, apex of tibiotarsus. (Coccinellini)

Figure 34.620. *Coleomegilla maculata* (De Geer), apex of tibiotarsus. (Coccinellini)

Figure 34.621. *Coccinella transversoguttata* Faldermann, parascolus. (Coccinellini)

Figure 34.622. *Lindorus lophantae* Mulsant, ninth abdominal tergite. (Coccidulini)

Figure 34.623. *Stethorus punctum* (LeConte), third abdominal tergite, left half. (Stethorini)

Figure 34.624. *Delphastus sonoricus* (LeConte), third abdominal tergite, right half. (Serangibini)