REVISION OF THE AUSTRALIAN COCCINELLIDAE (COLEOPTERA). PART 4. TRIBE TELSIMINI

ADAM ŚLIPIŃSKI¹, HONG PANG² and ROBERT D. POPE³

¹CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia; e-mail: Adam.Slipinski@ento.csiro.au
²State Key Laboratory of Biocontrol, Institute of Entomology, Zhongshan University Guangzhou 510275, China
³Brackley Burn, Park Street; Slinfold, Sussex RH13 7RU, England

Abstract.—The Australian members of the Coccinellid tribe Telsimini are revised which now includes 2 genera and 16 species. Nomenclatural history, diagnoses and distribution are provided for each genus and species. Keys to the genera and species are also presented. The lectotypes are designated for: Lipernes creber Blackburn, 1895, L. gibbosus Blackburn, 1895, L. subviridis Blackburn, 1892 and Serangium obscuripes Lea, 1902. Telsimia abdicta, T. acaciae, T. cassicula, T. glorious, T. leucoceps, T. occidua, T. paltians, T. rossi and T. rotunda spp. nov. are described from Australia. Serangium obscuripes Lea, 1902 is transferred to Telsimia and T. elainae Chazeau is newly recorded from Australia.

Key words.—Entomology, taxonomy, review, Cucujoidea, Coccinellidae, Telsimini, New Guinea, Australia.

INTRODUCTION

This is the fourth of a series of papers aiming to revise the Australian Coccinellidae (Pope 1988, Slipinski 2004), to provide a means for the identification and summarise available information concerning their distribution and biology. Many of the groups to be covered include species from several continents and examination of the comprehensive collections from all over the world makes it clear that the higher classification of the Coccinellidae, as currently accepted, leaves something to be desired. The Telsimini, known from Africa and many parts of Asia, widespread in the Pacific islands, New Guinea and Australia, are today accepted as part of the subfamily Chilocorinae. The present study has cast strong doubts on this view and a more wide ranging investigation may well result in their elevation to a separate subfamily.

MATERIAL AND METHODS

Specimens examined were obtained from the following institutions:
AMS – Australian Museum, Sydney,
ANIC – Australian National Insect Collection, Canberra,
BMNH – Natural History Museum, London,
CMN – Canadian Museum of Nature, Ottawa,
CNC – Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa,
MVM – Museum of Victoria, Melbourne,
NSWDA – New South Wales Department of Agriculture, Insect Collection, Orange,
NTM – Northern Territory Museum, Darwin,
NRM – Naturhistoriska Riksmuseet, Stockholm,
QDPIB – Queensland Department of Primary Industries, Brisbane,
QDPIM – Queensland Department of Primary Industries, Mareeba,
QMB – Queensland Museum, Brisbane,
SAM – South Australian Museum, Adelaide,
USNM – Natural History Museum, Smithsonian Institution, Washington DC,
UQIC – University of Queensland Insect Collection, Brisbane,
WAM – Western Australian Museum, Perth.

The measurements were made using a micrometer attached to a dissection microscope as follows: (TL) total length, from apical margin of clypeus to apex of elytra; (PL) pronotal length, from the middle of anterior margin to margin of basal foramen; (PW) pronotal width at widest part; (EL) elytral length along suture, including scutellum; (EW) elytral width across both elytra at