This article was downloaded by: [Moskow State Univ Bibliote]

On: 11 February 2014, At: 13:37

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Archives Of Phytopathology And Plant Protection

Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/gapp20

Mass production, releasing and evaluation of the lady beetle, Coccinella undecimpunctata (Coleoptera: Coccinellidae), for control of aphids in Egypt

Shaaban Abd-Rabou ^a

^a Plant Protection Research Institute, Agriculture Research Center, Dokki, Giza, Egypt Published online: 01 Apr 2008.

To cite this article: Shaaban Abd-Rabou (2008) Mass production, releasing and evaluation of the lady beetle, Coccinella undecimpunctata (Coleoptera: Coccinellidae), for control of aphids in Egypt, Archives Of Phytopathology And Plant Protection, 41:3, 187-197

To link to this article: http://dx.doi.org/10.1080/03235400600679909

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Mass production, releasing and evaluation of the lady beetle, *Coccinella undecimpunctata* (Coleoptera: Coccinellidae), for control of aphids in Egypt

SHAABAN ABD-RABOU

Plant Protection Research Institute, Agriculture Research Center, Dokki, Giza, Egypt

(Received 30 January 2006)

Abstract

Coccinella undecimpunctata L. (Coleoptera: Coccinellidae) is one of the most effective bioagents for control of aphids in Egypt. The present work deals with mass production, releasing and evaluation of this predator on different aphid pests including Aphis gossypii Glover on cotton, Brevicoryne brassicae (L.) on cabbage, Aphis craccivora Koch on potato, Myzus persicae (Sulzer) on apple, Aphis nerri (Boyer de Fonscolombe) on oleander and Pterochloroides persicae Chlod. on peach. Experiments were carried out in four different locations of Egypt including Qalubiya, Demmyate, North Sinai and Giza. About 2.22 million eggs were released, biweekly, during 2003–2004. Eggs were assessed monthly during 2004 by counting aphid stages and larva and pupa of C. undecimpunctata. The results show that the populations of aphid species decreased from 3115–11, 1062–315, 2110–28, 1945–310, 1152–310 and 4350–76 individuals/10 leaves on cotton, apple, cabbage, peach, potato, oleander, respectively after releasing C. undecimpunctata. Significant reductions in some aphid predators and parasitoids also occurred.

Keywords: Apple, biological control, cabbage, cotton, lady beetle, potato

Introduction

Worldwide, the management of the aphid species depends heavily on frequent application of synthetic insecticides which often lead to resistance development in the aphid species and the development of natural enemies (Sun et al. 1994). Coccinellids or ladybird beetles are considered the most important enemies of aphids and in different parts of the world have been effectively utilized for integrated control of several aphid pests (Brown 2004). Coccinella undecimpunctata L. (Coleoptera: Coccinellidae) is a common coccinellid and recorded as an effective agent for the biological control of different aphids due to its polyaphidophagous feeding habit (Ogenga-Latigo 1994). During the 20th century, eight aphidophagous coccinellid species have established and spread in North America including C. undecimpunctata (Gordon & Vandenberg 1991; Day et al. 1994; Hoebeke & Wheeler 1996). Coccinella undecimpunctata is one of the most important predators encountered in Egyptian fields. It is being considered as a potential agent for biological control of aphid

Correspondence: Shaaban Abd-Rabou, Plant Protection Research Institute, Agriculture Research Center, Dokki, Giza, Egypt. Tel: 20010 3633239. Fax: 2023904250. E-mail: shaaban59@yahoo.com

ISSN 0323-5408 print/ISSN 1477-2906 online © 2008 Taylor & Francis

DOI: 10.1080/03235400600679909

species (Ibrahim 1955; Abbas 1985; Darwish & Ali 1991; Ahmed et al. 1999). Detailed studies of the biology, life history, feeding capacity, prey preference of its larval and adult stages, seasonal abundance, effect insecticides, its enemies and assessment of its role against aphid species have been studied extensively (Ibrahim 1955; El-Heneidy & Attia 1991; El-Ghareeb 1992; Kayapinar & Kornosor 1993; Abdel-Salam 1995). The aim of this work is to conduct mass production, manipulating, releasing and evaluating of *C. undecimpunctata* on different species of aphid in different locations in Egypt.

Materials and methods

Dry beans (Vicia faba) were soaked in water for two days and then planted in soil or peat moss and left to grow until they were 2-3 cm high. Adults of the aphid, Aphis craccivora Koch and infesting beans were obtained from the field and transferred to laboratory-reared bean plants attaching infested leaves obtained from the field onto the reared plants. Coccinella undecimpunctata found in the field were also brought to the laboratory where they were kept in cylindrical boxes covered with muslin cloth and provided with aphids infesting bean plants and left to breed. Eggs deposited inside the box were moved to fresh bean plants, 15 cm high and 10 cm diameter, which were infested with aphids. Coccinella undecimpunctata eggs obtained in the laboratory were used experimentally as described below. In 2003 and 2004 about 2.22 million eggs were released in Qalubiya, Demmyate, North Sinai and Giza on Brassica oleracea L. variety botrytis (cabbage) infested by Brevicoryne brassicae (L.), Solanum tuberosum L. variety clara (potato) infested by Aphis craccivora Koch, Gossypium barbadence L. variety Giza 57 (cotton) infested by Aphis gossypii Glover, Pyrus malus L. variety Silvestris (apple) (15 years old, 3 m high) infested by Myzus persicae (Sulzer), Nerium oleander L. (oleander) infested by Aphis nerri (Boyer de Fonscolombe) and Pruns persica Batsch variety sinewy (peach) infested by *Pterochloroides persica* Chlod. Predators were released as eggs by fixing the cards containing these eggs to plants such that newly enclosed beetle larvae could emerge and crawl onto the plants.

During 2003 – 2004, biweekly releases were made of 200 eggs per tree of apple (100 trees and 20 release times), peach (100 trees and 12 release times) and oleander (50 trees and 12 release times), and of 100 eggs per plant for cotton (400 plants and 12 release times), potato (600 plants and eight release times) and cabbage (500 plants and 10 release times), 1.11 million eggs for each year. Releases began from February to May in the case of potato, from June to October in the case of cabbage, from March to December in the case of apple and from May to October in the case of cotton, oleander and peach. The evaluation of releases was assessed monthly during 2004 by counting the stages of aphids present and larvaeand pupa of *C. undecimpunctata* present on a total of 10 leaves from each plant in each site.

Statistical analysis of the obtained data was followed using ANOVA procedures in SAS. Mean separation was conducted using Duncan Multiple range test in SAS.

Results

On Aphis gossypii on cotton

The population of A. gossypii on cotton in Demmyate was 69 individuals/10 leaves while the natural enemies were 25, 0, 190 individuals/10 leaves during June for Chyrsoperlla carnea, Aphelinus abdominalis, C. undecimpunctata, respectively after releases (Figure 1) while in comparison to 294 individuals/10 leaves and the natural enemies were 67, 4, and 24 individuals/10 leaves in the control experiment (Figure 2).

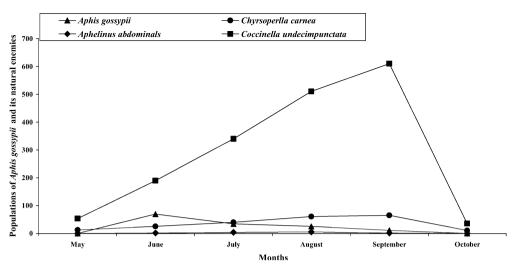


Figure 1. Number of populations of *Aphis gossypii* and natural enemies after releasing of *Coccinella undecimpunctata* on cotton.

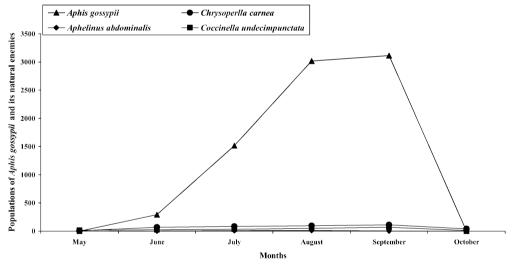


Figure 2. Number of populations of *Aphis gossypii* and natural enemies before releasing of *Coccinella undecimpunctata* on cotton.

The population of aphids decreased gradually after releasing until it reached 11 individuals/10 leaves during September, while the natural enemies were 65, 0, 610 individuals/10 leaves for *C. carnea*, *A. abdominalis*, *C. undecimpunctata*, respectively in comparison to the control experiment the aphids were 3115, while the natural enemies were 112, 2, 11 individuals/10 leaves. In this experiment the results show that the populations of aphid decreased from 3115 to 11 individuals/10 leaves while the population of *C. undecimpunctata* increased from 11–610 in the end of the experiment, indicating that the effective role of this coccinellid in controlling *A. gossypii* on cotton. The present work also observed the population of natural enemies decreased after releasing from 98 to 60 and 12 to 1 for *C. carnea*, *A. abdominalis*, respectively during August.

On Myzus persicae on apple

The population of *M. persicae* on apple in Giza was 130 individuals/10 leaves while the natural enemies were 3, 0 and 45 individuals/10 leaves during April for *C. carnea*, *Aphidius* sp., *C. undecimpunctata*, respectively after releases (Figure 3) while in comparison to 480 individuals/10 leaves and the natural enemies were 18 and 4 for *C. carnea*, *Aphidius* sp., individuals/10 leaves in the control experiment (Figure 4). The population of aphid decreased

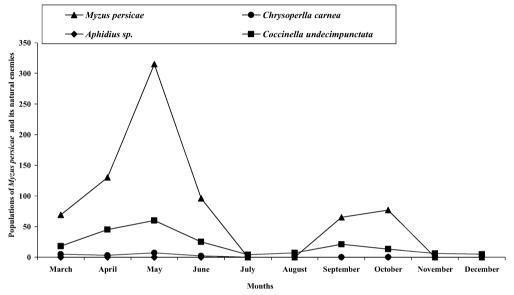


Figure 3. Number of populations of Myzus persicae and natural enemies after releasing of Coccinella undecimpunctata on apple.

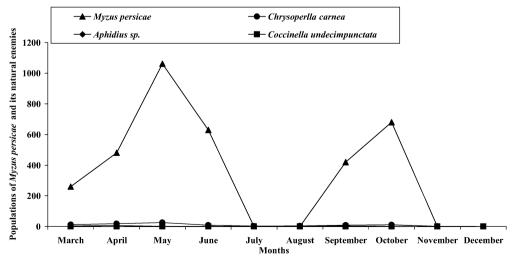


Figure 4. Number of populations of Myzus persicae and natural enemies before releasing of Coccinella undecimpunctata on apple.

gradually until it reached 630 individuals/10 leaves during June, while C. carnea, Aphidius sp. were 9 and 1 individuals/10 leaves in the control experiment. Also, during this month the numbers attained in an amount of 90 individuals/10 leaves while C. carnea, Aphidius sp., C. undecimpunctata were 2, 0, 25 individuals/10 leaves in treatment. From July until August, no aphids were recorded at the control experiment, this result, of course, was due to the absence of aphids at that time in the treatment experiment while C. undecimpunctata, the only natural enemy, was recorded in the aforementioned months with 4 and 7 individuals/10 leaves; from September to October the population of aphids began to rise again, the numbers were 77 individuals/10 leaves while C. carnea, Aphidius sp., C. undecimpunctata attained 0, 0, 13 individuals/10 leaves. During November and December, no population of either aphids or natural enemies occurred in the control experiment while the population of C. undecimpunctata was 5 individuals/10 leaves and no aphids were found at all. In this experiment the results show that the populations of aphids decreased from 1062 to 315 while the population of C. undecimpunctata increased from 0-60 during May. This coccinellid established on M. persicae in this area for the first time. The present work also observed the population of natural enemies decreased after releasing from 25, 6 to 7, 0 for C. carnea, Aphidius sp., respectively during May.

On Brevicoryne brassicae on cabbage

The population of *B. brassicae* on cabbage in Qalubiya was 510 individuals/10 leaves while the natural enemies were 3, 1, 24 individuals/10 leaves during July for *Scymnus* sp., *Aphidius* sp., *C. undecimpunctata*, respectively after releases (Figure 5) while in comparison to 1380 individuals/10 leaves and the natural enemies were 11, 5, 4 individuals/10 leaves for *Scymnus* sp., *Aphidius* sp., *C. undecimpunctata* respectively, in the control experiment (Figure 6). The population of aphid decreased gradually after releasing until it reached 28 individuals/10

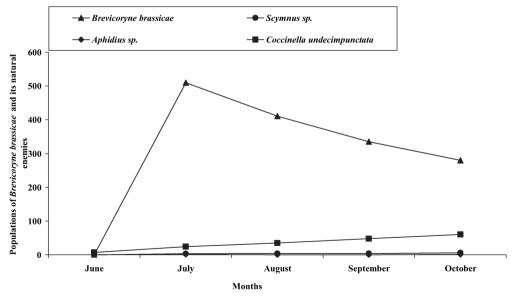


Figure 5. Number of populations of Brevicoryne brassicae and natural enemies after releasing of Coccinella undecimpunctata on cabbage.

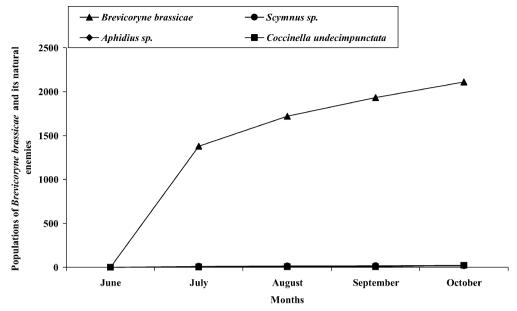


Figure 6. Number of populations of *Brevicoryne brassicae* and natural enemies before releasing of *Coccinella undecimpunctata* on cabbage.

leaves during October, while the natural enemies were 6, 1, 80 individuals/10 leaves for *Scymnus* sp., *Aphidius* sp., *C. undecimpunctata*, respectively. In comparison to the control experiment, the aphids were 2110 while the natural enemies were 22, 12, 11 individuals/10 leaves *Scymnus* sp., *Aphidius* sp., *C. undecimpunctata*, respectively. In this experiment the results show that the population of aphids decreased from 2110 to 28 individuals/10 leaves while the population of *C. undecimpunctata* increased from 11–80 by the end of the experiment, indicating the role of this coccinellid in controlling *B. brassicae* on cabbage. The present work also observed the population of natural enemies decreased after releasing from 22, 12 to 6, and 1 for *Scymnus* sp., *Aphidius* sp., respectively during October.

On Pterochloroides persica on peach

The population of *P. persica* on peach in North Sinai was 540 individuals/10 leaves while the natural enemies were 0, 43 individuals/10 leaves during May for *Aphidius* sp., *C. undecimpunctata*, respectively after releases (Figure 7) while in comparison to 850 individuals/10 leaves and the parasitoid, *Aphidius* sp.was 5 individuals/10 leaves in the control experiment (Figure 8). The population of aphid decreased gradually after releasing until it reached 310 individuals/10 leaves during August, while the natural enemies were 0, 132 individuals/10 leaves for *Aphidius* sp., *C. undecimpunctata*, respectively in comparison to the control experiment the aphids were 1945, while the parasitoid, *Aphidius* sp. was 24 individuals/10 leaves. In this experiment, the results show that the populations of aphids decreased from 1945–310 while the population of *C. undecimpunctata* increased from 0–132 during August. This coccinellid established on *P. persica* in this area for the first time. The present work also observed the population of natural enemies decreased after releasing from 24–0 for *Aphidius* sp. during August.

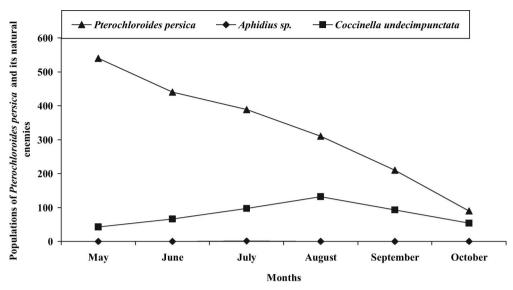


Figure 7. Number of populations of *Pterochloroides persica* and natural enemies after releasing of *Coccinella undecimpunctata* on peach.

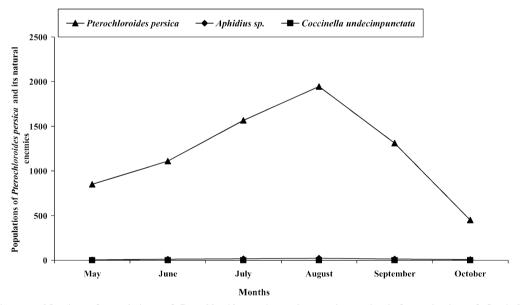


Figure 8. Number of populations of *Pterochloroides persica* and natural enemies before releasing of *Coccinella undecimpunctata* on peach.

On Aphis craccivora on potato

The population of *A. craccivora* on potato in Giza was 521 individuals/10 leaves while the natural enemies were 1, 0, 65 individuals/10 leaves during Feburary for *C. carnea*, *Orius albidipenis* Reuter, *C. undecimpunctata*, respectively after releases (Figure 9) while in comparison to 1692 individuals/10 leaves and the natural enemies were 11, 2, 14 individuals/10

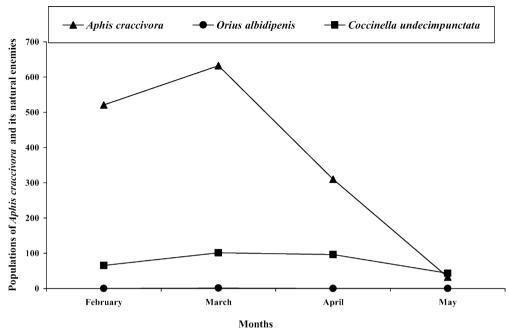


Figure 9. Number of populations of *Aphis craccivora* and natural enemies after releasing of *Coccinella undecimpunctata* on peach.

leaves in the control experiment (Figure 10). The population of aphid decreased gradually after releasing until it reached 310 individuals/10 leaves during April, while the natural enemies were 1, 0, 96 individuals/10 leaves for *C. carnea*, *O. albidipenis*, *C. undecimpunctata*, respectively in comparison to the control experiment where the aphids were 1152, while the natural enemies were 12, 1, 20 individuals/10 leaves (Figure 5). In this experiment the results show that the population of aphid decreased from 1152-310 individuals/10 leaves while the population of *C. undecimpunctata* increased from 20-96 by the end of the experiment, indicating the role of this coccinellid in controlling *A. craccivora* on potato. The present work also observed the population of natural enemies decreasing after release from 19, 5 to 3, 1 for *C. carnea*, *O. albidipenis*, respectively, during March.

On Aphis nerii on oleander

The population of A. nerii on oleander in Giza was 262 individuals/10 leaves while the natural enemies were 1, 0, 32 individuals/10 leaves during June for Aphidoletes meridionalis Felt, Aphelinus mali, C. undecimpunctata, respectively after releases (Figure 11) while in comparison to 465 individuals/10 leaves and the natural enemies were 23, 3 individuals/10 leaves for A. meridionalis Felt, A. mali in the control experiment (Figure 12). The population of aphid decreased gradually after releasing until it reached 40 individuals/10 leaves during September, while the natural enemies were 0, 0, 65 individuals/10 leaves for A. meridionalis Felt, A. mali, C. undecimpunctata, respectively. In comparison to the control experiment the aphids were 3265, while the natural enemies were 32, 3 individuals/10 leaves for A. meridionalis Felt, A. mali (Figure 6). In this experiment, the results show that the population of aphids decreased from 4350-76 individuals/10 leaves while the population of C. undecimpunctata increased from 0-70 during August. This coccinellid established on A. nerii on oleander in

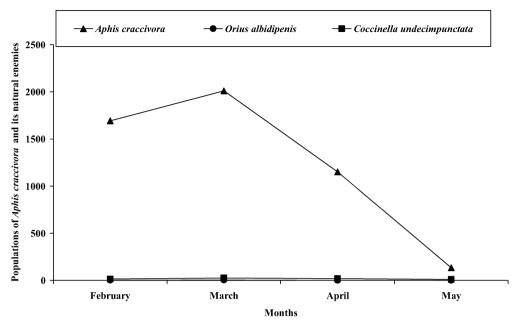


Figure 10. Number of populations of *Aphis craccivora* and natural enemies before releasing of *Coccinella undecimpunctata* on peach.

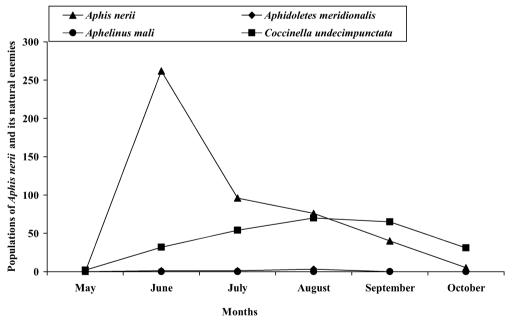


Figure 11. Number of populations of *Aphis nerii* and natural enemies after releasing of *Coccinella undecimpunctata* on oleander.

this area for the first time. The present work also observed the population of natural enemies decreasing after release from 36, 11 to 3, 0 for *A. meridionalis* Felt, *A. mali*, respectively during March.

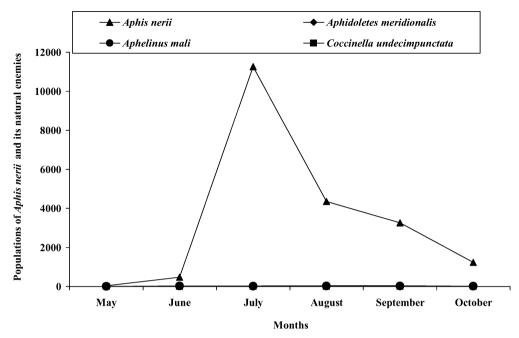


Figure 12. Number of populations of *Aphis nerii* and natural enemies before releasing of *Coccinella undecimpunctata* on oleander.

This result indicated that the population of aphid species on different host plants in different locations in Egypt decreased significantly in all experiments after the release of C. undecimpunctata (p < 0.01) and (p < 0.05). The effects of C. undecimpunctata on the numbers of some aphid predators were also seen. Coccinella carnea decreased significantly after releasing C. undecimpunctata in all experiments (p < 0.05). Two other predators, Scymnus sp. and A. meridionalis decreased significantly (p < 0.05), while C0. albidipenis was not significantly affected. The parasitoids C1. albidimenis that parasitized C2. albidimenis3 sp. that parasitized C3. albidimenis4 were decreased significantly in all experiments after the release of C3. albidimenis4 were decreased significantly in all experiments after the release of C3. albidimenis4 albidimenis5 and albidimenis5 albidimenis6 albidimenis6 albidimenis6 albidimenis6 albidimenis6 albidimenis6 albidimenis6 albidimenis6 albidimenis7 albidimenis8 albidimenis8 albidimenis8 albidimenis9 albidimenis8 albidimenis9 albi

Discussion

The results indicated that the population of aphid species was decreased after the release of *C. undecimpunctata* in all locations in Egypt. Also, the population of *C. undecimpunctata* was increased in all experiments after releasing while the populations associated with natural enemies was decreased. During the present work *C. undecimpunctata* was established in Sinai associated with the population of *P. persica* on peach for the first time, an area that was characterized by vast desert area, mild temperature and high humidity. Evaluations of augmentative releases of coccinellids have focused on immediate reductions of target pest densities (Hagen & Van den Bosch 1968; Abd-Rabou 2000). During the 20th century, eight aphidophagous coccinellid species have established and spread in North America including *C. undecimpunctata* (Gordon 1985; Gordon & Vandenberg 1991).

Hagen (1974) stated that coccinellids played an important role in the control of aphids and Obrycki and Kring (1998) observed the fast spread of Coccinella on aphid populations in different parts of the world and detected excellent results in the control of aphids by this coccinellid species. The present work agrees with the findings of the aforementioned authors and confirms the effective role of *C. undecimpunctata* after rearing and releasing in different locations in Egypt. This work indicates that the populations of some natural enemies also decreased after the releasing of *C. undecimpunctata*. These findings agree with Rosenheim et al. (1994), who found that most species of coccinellids, including *C. undecimpunctata*, feed on more than one prey. Wheeler et al. (1968) found that coccinellids also feed on parasitized mummified aphids which could reduce aphid parasitoid populations.

References

- Abbas MS. 1985. Population dynamics of *Myzus persicae* Sulz and its natural enemies on peach trees. Agric Res Rev 63:109-114.
- Abdel-Salam AH. 1995. The biotic factors evaluation of their performance under natural conditions in cotton plantations [Phd Thesis]. Egypt: Mansoura University.
- Abd-Rabou S. 2000. The efficacy of indigenous and imported predators utilized in the biological control of *Bemisia tabaci* Biotype 'B' (Homoptera: Aleyrodidae) in greenhouse. Acta Phytopathologica Hungarica 34:333 339.
- Ahmed MA, Abd El-Wahab HA, El-Deeb SH, Metwally SAG. 1999. Population dynamics of sugar beet leaf insect pests as well as their predators and parasites in Fayoum. J Egyptian Germany Soc Zool 30:253–269.
- Brown MN. 2004. Role of aphid predator guild in controlling spirea aphid populations on apple in West Virginia, USA. Biol Control 29:189–198.
- Day WH, Prokryn DR, Ellis DR, Chianese RJ. 1994. The known distribution of the predator *Propylea quatuordecimpunctata* (Coleptera: Coccinellidae) in the United States and thoughts on the origin of this species and five other exotic lady beetles in eastern North America. Entomol News 105:244–256.
- Darwish YA, Ali AM. 1991. Field population trends of cereal aphids and their natural enemies on corn plants in Upper Egypt. Assiut J Agric Sci 22:33-42.
- El-Ghareeb AM. 1992. Target site sensitivity and detoxification processes in relation to insecticide potency and selective toxicity in cotton leaf worm and ladybird. Assiut J Agric Sci 23:113-128.
- El-Heneidy AH, Attia AA. 1991. Evaluation of the role of parasitoids and predators associated with aphids in wheat fields. Egypt. Bull Ent Soc Egypt Econ Ser 17:137–147.
- Gordon RD. 1985. The Coccinellidae (Coleoptera) of America north of Mexico. J NY Entomological Soc 93:1–192. Gordon RD, Vandenberg N. 1991. Field guide to recently introduced species of Coccinellidae (Coleoptera) in North America, with a revised key to North American genera of Coccinellini. Proceedings Entomological Soc Washington 93:845–964.
- Hagen KS. 1974. The significance of predaceous Coccinellidae in biological and integrated control of insects. Entomol Memories, Hors-serial 7:25-44.
- Hagen KS, Van den Bosch R. 1968. Impact of pathogens, parasites and predators on aphids. Ann Rev Entomol 13:325-384.
- Hoebeke ER, Wheeler AG. 1996. Adventive lady beetles (coleopteran: Coccinellidae) in the Canadian maritime provinces, with new eastern US records of *Harmonia quadripunctata*. Entomol News 107:281–290.
- Ibrahim MM. 1955. Studies on the biology and life cycle of *Coccinella undecimpunctata* L. (Coleoptera: Coccinellidae). Bull Soc Entomological of Egypt 39:395–423.
- Kayapinar A, Kornosor S. 1993. Investigation of the effect of the predatory insects on larval stages of *Ostrinia nubilalis* Hubner (lep. Pyralidae). Turkiye Entmoloji Dergisi 17:69–76.
- Obrycki JJ, Kring TJ. 1998. Predacious Coccinellidae in biological control. Ann Rev Entomol 43:295 321.
- Ogenga-Latigo MW. 1994. Species range and abundance of insect predator of the bean aphid, *Aphis fabae* Scop. (Homoptera: Aphididae) on common beans in Kenya. Insect Sci Applic 15:55-59.
- Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA. 1994. Intraguild predation among biological control agents: Theory and evidence. Biological Control 5:303–335.
- Sun Y, Feng G, Yuan J, Gong K. 1994. Insecticide resistance of cotton aphid in North China. Entomol Sinica 1:242-250.
- Wheeler AG, Hayes JT, Stephens JL. 1968. Insect predators of mummified pea aphids. Can Entomol 100:221 222.