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Abstract

 

The influence that vegetation diversity and the spatial scale of that diversity exert on insect behavior
has increasingly been explored in the ecological literature, but relatively few experiments have explicitly
incorporated both factors in experimental treatments. We conducted a field study designed to explore
the effect of both of these factors on insect movement behavior in a broccoli agroecosystem. We
caught and released seven-spotted ladybird beetles (

 

Coccinella septempunctata

 

 L.) in plots containing
different degrees of vegetation diversity at two different spatial scales in which prey had been
removed. Beetle movement was recorded at timed intervals, and move lengths and turning angles
were used to generate discrete path maps for each beetle. Observed mean beetle net squared displace-
ments were compared with predicted net squared displacements, and 95% confidence intervals were
generated using a bootstrap method described by Turchin (1998) [Quantitative Analysis of Movement:
Measuring and Modeling Population Redistribution in Animals and Plants. Sinauer Associates Inc.,
Sunderland, MA.]. Predicted net squared displacements underestimated beetle movement in smaller
plots with both low and higher vegetation diversity for the first five move lengths, whereas no signific-
ant difference between observed and predicted net squared displacement for beetles in larger plots
of either level of vegetation diversity were detected. These findings highlight the need for a better
understanding of how natural enemies are influenced by vegetation diversity and the spatial scale of

 

that vegetation in agroecosystems. The implications of these results for biological control are discussed.

 

Introduction

 

Insect ecologists have long been concerned with the influ-
ence that vegetation heterogeneity exerts on population
abundance and distribution (Root, 1973; Cromartie, 1975;
Bach, 1980a,b; Horn, 1981; Kareiva, 1985; Vandermeer,
1989; Bohlen & Barret, 1990; Johnson et al., 1992; Carcamo,
1995; Banks, 1998, 1999, 2000; Banks & Ekbom, 1999;
Doak, 2000). While insights gleaned from these studies
have contributed greatly to our understanding of how
ecological processes mesh with both biotic and abiotic
factors via habitat vegetation structure and composition,
they have been largely focused on the relationship between
herbivorous insects and vegetation spatial patterning and
diversity. Of the much smaller number of studies exploring

the link between natural enemies and their habitats, most
have been measured indirectly in terms of predator–prey–
habitat interactions (Root, 1973; Cromartie, 1975). Notable
exceptions are recent studies of parasitoid-host dynamics
(e.g., Roland & Taylor, 1997) that have demonstrated
that host–parasitoid interactions are sensitive to host
distribution as well as to the structure and composition of
host habitat. However, less is known about the response
of less specialized predators such as polyphagous beetles
to vegetation structure (but see Kareiva & Perry, 1989;
Crist et al., 1992). Although the aggregation of beetles to
their prey has been the subject of much recent important
theoretical and experimental work (Bryan & Wratten,
1984; Kareiva & Odell, 1987; Grünbaum, 1998; Raymond
et al., 2000), these studies lend little insight into how the
physical characteristics of vegetation habitat, independent
of prey densities, may directly influence predator behavior
and subsequent abundance and distribution.
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The importance of spatial scale in ecological phenomena
has received much attention in the past few decades
(Murphy, 1989; Wiens, 1989; Rose & Leggett, 1990;
Dwyer, 1992; Levin, 1992; Durrett & Levin, 1994; Holmes
et al., 1994; May, 1994; Molumby, 1995; Underwood &
Chapman, 1996; Tilman & Kareiva, 1997). Despite this
trend, there have been relatively few field experiments that
explicitly incorporated scale as a manipulated treatment
factor (Rothman & Darling, 1991; Marino & Landis, 1996;
Schooler et al., 1996; Roland & Taylor, 1997; Banks, 1998,
1999; Norowi et al., 2000). One means of exploring the
effects of spatial scale on ecological interactions is by
quantifying the movement patterns of organisms in
habitats of different scales; insects are especially amenable
to this sort of analysis (Cain et al., 1985; Wiens & Milne,
1989; Turchin et al., 1991; Wiens et al., 1993a,b; Turchin,
1998).

We describe here field experiments that expressly
examined how habitat vegetation diversity and the spatial
scale of that diversity exert direct effects on predator
behavior. In particular, our experiments aimed to quantify
the response of polyphagous beetles directly to habitat
manipulations in the absence of their prey. In order to
disentangle predator aggregation behavior and their
response to vegetation diversity, we removed all prey in
the experimental plots by spraying plants with a selective
pesticide prior to conducting our experiments. Using a
diffusion model (correlated random walk) commonly
used to describe insect movement, we then compared the
behavior of the common seven-spotted ladybird beetle
(

 

Coccinella septempunctata

 

 L.) (Coleoptera: Coccinellidae)
in plots with two levels of vegetation diversity at two
different spatial scales. We discuss the ramifications of
our study in agricultural settings, especially in relation to
biological control.

 

Materials and methods

 

Coccinella septempunctata

 

Coccinella septempunctata

 

, the seven-spotted ladybird
beetle, is a common aphidophagous predator that was
introduced to the USA in the 1950s, and has since become
ubiquitous, although the details of its establishment are
not precisely known (Angalet et al., 1979; Schaeffer et al.,
1987; Elliott et al., 1996; Obrycki & Kring, 1998). 

 

Coccinella
septempunctata

 

 will consume aphids and other insects,
but is also attracted to pollen and nectar (Hagen, 1962).
Individuals typically fly among patches of vegetation
searching for likely prey habitat, then switch to a walking
behavior once they have alighted and begin foraging
(Hodek, 1973). Once in prey habitat, beetles cue on aphid
presence, often resulting in increased oviposition and large

aggregations of ladybirds near prey (Evans & Dixon, 1986;
Obrycki & Kring, 1998).

 

Field experiments

 

We established plots of broccoli (

 

Brassica oleracea

 

, var.
Emporer F1, Zenner Bros., Oregon) at two different spatial
scales surrounded by either bare ground or weedy vegeta-
tion at Washington State University’s Puyallup Research
and Extension Center Experimental Farm Five, 70 km
south of Seattle in Puyallup, Washington, USA. Broccoli
was used in this experiment because it can be grown in
homogeneous stands of relatively uniform plants. Broccoli
were established in square plots measuring either (i) 2.5 m

 

×

 

 2.5 m (smaller scale), or (ii) 5 m 

 

×

 

 5 m (larger scale).
Plots at both spatial scales were planted with low or high
vegetation diversity, surrounded in each case by 1 m or 2 m
wide (respectively) margins of either (a) bare ground, or
(b) weedy vegetation. At both spatial scales, broccoli were
spaced 0.5 m apart; smaller-scale plots contained 16 (4 

 

×

 

4) broccoli plants, while larger-scale plots contained 64
(8 

 

×

 

 8) plants. The most prevalent species in weedy margins
were 

 

Amaranthus powellii

 

 (S. Watson), 

 

Chenopodium album

 

(L.), 

 

Echinochloa coluna

 

 (L.), and 

 

Echinochloa crus-galli

 

(L.). All plots were separated from other plots by a mini-
mum of 5.5 m in order to ensure that insect movements
within plots were independent of neighboring plots in
the field. Weedy vegetation in-between plots and within
broccoli areas of each plot was regularly removed by
tractor and hand cultivation, respectively, throughout the
duration of the experiments.

Broccoli were grown from seed in moulded polypropy-
lene planting flats and kept in the greenhouse until large
enough to transplant into the field. Smaller-scale plots
were established in the field on 19 June 2000; broccoli were
transplanted into larger-scale plots on 24 July. Because
broccoli attracts a suite of herbivorous aphids in western
Washington, including 

 

Myzus persicae

 

 (Sulzer) and 

 

Brevi-
coryne brassicae

 

 (L.), all broccoli plants in experimental
plots were sprayed with the selective pesticide Pirimor on
27 July. We removed the aphid prey so that behavioral
experiments could be conducted without prey as a con-
founding factor in beetle response to vegetation manipu-
lations. In order to minimize possible effects of residuals
on experimental ladybirds, we waited 5 days before doing
any movement behavioral experiments. Subsequently,
throughout the duration of the experiment, plants were
frequently checked to minimize the possibility that there
were aphids on any of the broccoli plants.

 

Data collection

 

For the behavioral observation experiments, we collected
live 

 

C. septempunctata

 

 individuals from vegetation adjacent
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to the experimental plots and placed them singly in card-
board containers. Beetles were kept in the containers in a
cool, shaded area in the field before being observed in
broccoli plots. Special care was taken not to keep beetles
in the containers for more than 1 h before using them in
behavioral experiments to minimize possible changes
in their behavior due to being held captive too long; in
most cases, they were kept no longer than 15–20 min in
containers. Each individual was released on the ground
in the center of a randomly chosen weedy margin or
bare ground margin plot and its subsequent movement
behavior recorded. As soon as a beetle began moving, we
began marking its positions at 5 s intervals, placing thin
pieces of wire with numbered flags on the ends into the
ground at each position, keeping well out of the way to be
sure the beetles were not disturbed by our marking activity.
After 10 5-s moves were completed, we measured net
squared displacements and the move lengths and turning
angles from each previous direction for all moves. We
recorded a total of 24 beetle paths in smaller plots (14
bare ground, 10 weedy), and 30 beetle paths in larger plots
(15 bare ground, 15 weedy), for a total of 54 beetles used
in the study.

 

Movement model

 

We used a diffusion model to quantify beetle behavior in
the different treatment settings. In particular, we used a
random walk model that stipulates that the beetles move
randomly with some tendency to move in the same direc-
tion from one move to the next. The model, a modified
simple diffusion model originally developed by Goldstein
(1951), may be described as:

where p is the particle (or beetle) density, v is the wave
speed (a measure of how fast the population is diffusing)
and T is a characteristic move correlation time (particular
to the correlation among moves for beetles) (Okubo &
Grünbaum, 2001). This model, known as the telegraph
equation, or more generally as a correlated random walk
(CRW) model, has been employed in several other insect
movement studies, including those modeling beetles
(Kareiva & Shigesada, 1983; Wallin & Ekbom, 1988;
Turchin, 1991, 1998; Crist et al., 1992). Because it allows
for some correlation in the direction of turning of
successive moves, it is a more realistic description of the
behavior of many foraging insects than a simple random
walk. Furthermore, it is also mathematically more realistic
for terrestrial insects, predicting a finite dispersion velocity
rather than the infinite velocity characteristic of simple
random walks (Okubo & Grünbaum, 2001).

 

Analysis

 

In order to test the fit of observed beetle movement to the
CRW model in different treatment settings, we compared
observed mean net squared displacements for each beetle,

 

R

 

n

 

, to predicted mean net squared displacements. We gener-
ated the predicted 

 

R

 

n

 

, and corresponding 95% confidence
intervals using 10 000 runs of a bootstrap simulation
described by Turchin (1998), in which we repeatedly sampled
move lengths and turning angles with replacement from
the pool of observed data collected for each treatment.
We made these comparisons for low and high vegetation
diversity (bare ground and weedy margins, respectively)
plots, for both smaller and larger scale experimental plots.
Autocorrelation in turning directions was tested by develop-
ing contingency tables based on correlated subsequent
turn directions: left-left, left-right, right-right, and right-
left for bare ground and weedy plots at each spatial scale.
Autocorrelation in move lengths was analyzed by calculating
Pearson product-moment correlation coefficients using
subsequent lengths for bare ground and weedy plots
separately at each scale. Differences in frequency distribu-
tions for turning angles in bare ground and weedy plots at
both scales were analyzed using the Mann–Whitney non-
parametric test (Sokal & Rohlf, 1995).

 

Results

 

Beetles exhibited a strong response to the experimental
plot spatial scale manipulations, but not to the vegetation
diversity treatments. In particular, in the smaller-scale
plots, observed mean net squared displacement in the bare
ground plots did not fall within the 95% confidence limits
until after five moves (Figure 1), whereas in larger-scale
plots, observed and predicted mean net squared displace-
ments both fell completely within the confidence intervals
(Figure 2). The responses of the beetles at both spatial
scales were qualitatively similar for both bare ground and
weedy plots, suggesting that margin vegetation had little
influence on beetle dispersal.

We found no autocorrelation in direction of movement
for either bare ground or weedy margin plots at either scale
(small bare ground: 

 

χ

 

2

 

 = 0.216, P > 0.1, n = 51; small
weedy: 

 

χ

 

2

 

 = 0.365, P > 0.1, n = 39; large bare ground: 

 

χ

 

2

 

 =
1.167, P > 0.1, n = 56; large weedy: 

 

χ

 

2

 

 = 0.117, P > 0.1,
n = 48). Furthermore, we found no autocorrelation in
move lengths for larger plots for bare ground plots
(Pearson correlation coefficient = 0.001, P > 0.1, n = 120)
but did find some autocorrelation in move lengths in weedy
plots (Pearson correlation coefficient = 0.270, P < 0.005,
n = 120). For smaller plots, there was evidence of move
length autocorrelation for both bare ground (Pearson
correlation coefficient = 0.736, P < 0.001, n = 112) and
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weedy plots (Pearson correlation coefficient = 0.653, P
< 0.001, n = 80).

The frequency distribution of turning angles did not
differ significantly between margin types in smaller plots
(U = 2130.5, P = 0.74, n = 134) (Figure 3) or larger plots
(U = 2447, P = 0.494, n = 137) (Figure 4). Likewise, there
was no difference in move length frequency distributions
between margin treatments for smaller plots (U = 5403.5,
P = 0.551, n = 216) or larger plots (U = 8009.5, P = 0.082,
n = 270).

 

Discussion

 

Our results indicate that coccinellid movement depends
more strongly on the spatial scale of the experimental plots
than on the diversity of the vegetation present. These
findings serve as a cautionary note for those trying to
interpret the abundance and distribution patterns of
predator–prey complexes in ecological field experiments
conducted at different spatial scales.

Past greenhouse/field studies have shown that plant
architecture may have a marked effect on how ladybird
beetles interact with prey (Kareiva & Perry, 1989; Grevstad

Figure 1 Comparison of observed (dashed line with triangles) 
and predicted beetle mean net squared displacement (solid line 
with squares) at smaller spatial scale in: (a) bare ground margin 
plots, and (b) weedy margin plots. Predicted mean squared 
displacement and 95% confidence intervals (dotted lines) 
were obtained by simulation (see text).

Figure 2 Comparison of observed (dashed line with triangles) 
and predicted beetle mean net squared displacement (solid line 
with squares) at larger spatial scale in: (a) bare ground margin 
plots, and (b) weedy margin plots. Predicted mean squared 
displacement and 95% confidence intervals (dotted lines) 
were obtained by simulation (see text).

Figure 3 Frequency distribution of turning angles at smaller 
spatial scale in: (a) bare ground margin plots, and (b) weedy 
margin plots.
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& Klepetka, 1992). However, the current study represents
one of the first field studies aimed at directly measuring
beetle movement strictly in response to vegetation diversity
and spatial scale in the absence of prey. Previous studies
have demonstrated that ladybird beetles respond to both
chemical and visual cues when searching for prey (Obata,
1986; Harmon et al., 1998), with some species relying on
long-distance visual acuity to identify and move towards
plants (Lambin et al., 1996). The difference in movement
behavior between the two scales of our experimental plots
suggests that 

 

C. septempunctata

 

 may be limited in their
ability to orient using visual and chemical cues beyond a
certain distance. Our data suggest that this distance may lie
somewhere between 1 and 3 m, corresponding to the mean
distance from the center of our plots to the edge of the
margin somewhere between the small and larger scales.
Independent of this speculation regarding underlying
mechanisms, our results demonstrate that simple charac-
terizations of ladybird beetle movement within agroeco-
system habitat patches are not forthcoming.

There are several possible reasons why the correlated
random walk model underestimated the mean net squared
displacement of beetles in the first five moves of the obser-
vations in the smaller scale plots. The first, of course, is that
beetles in smaller scale plots initially move straighter and
farther from their point of origin than we would expect in
a correlated random walk, suggesting that they are able to

orient towards distances beyond the boundaries of the
experimental plots. A second possibility, against which
Turchin (1998) cautions, is that move lengths may have
been oversampled, leading to the inadvertent lumping
together of some autocorrelated moves in the early part
of the paths. Indeed, the detected autocorrelation in move
length suggests that this artefact may have contributed to
this pattern. However, in both weedy and bare ground
margin plots in the small scale experiments, this difference
disappears in the second half of the mean net squared
displacements, indicating that the CRW is, on average, a
good fit for the latter half of the paths. Furthermore, in
larger plots, the observed paths do fit the CRW model,
despite the fact that the same beetle release protocol and
broccoli spacing within plots were the same as in the
smaller scale observations. This discrepancy suggests that
beetles are responding to inherent differences in landscape
features at the two scales – which may or may not be in part
a function of their range of visual or chemical sensory
capabilities. Numerous studies have illustrated that the
spatial details of vegetation diversity are important to
herbivorous prey colonization and abundance (Bommarco
& Banks, 2003, Risch et al., 1983; Banks, 1998; Ferguson
et al., 2003). Further similar field studies investigating
the interplay of visual and chemical cues and landscape
features at different scales need to be conducted to better
understand how these factors combine to determine
ladybird response to host plant vegetation both with and
without prey.

The literature is replete with evidence that coccinellid
movement behavior is influenced by the consumption of
prey, resulting in ‘area-restricted’ or ‘area-concentrated’
searching behavior (Banks, 1957; Carter & Dixon, 1982;
Nakamuta, 1982, 1985). Such intensive foraging behavior
stimulated by the ingestion of prey can lead to macroscopic
patterns of ‘preytaxis’, in which beetles aggregate to prey
and even control outbreaks (Kareiva & Odell, 1987). Fur-
thermore, in the absence of sufficient prey, as is the case
in the current experiment, beetles have been shown to
increase their movement rates (Wallin & Ekbom, 1994;
Firle et al., 1998). In such cases, which correspond to
natural enemies colonizing fields before prey reach appre-
ciable numbers, coccinellids failing to encounter any
prey items may move out of broccoli patches more quickly
(i.e., move less randomly) than we might expect. This may
explain why the CRW underestimated beetle movement in
our smaller plots (Figure 1); however, it does not explain
why this underestimate did not hold true for the larger-
scale plots, nor why there is a difference in behavior
between the two spatial scales. These results may have
some bearing on a common scenario in agroecosystems in
which primary prey emergence occurs much later than the

Figure 4 Frequency distribution of turning angles at larger spatial 
scale in: (a) bare ground margin plots, and (b) weedy margin 
plots.
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arrival of natural enemies, especially in the absence of early
season alternative prey (Settle et al., 1996). The properties
of this type of asynchrony, familiar to biological control
practitioners attempting augmentative releases, have
been the basis of much theoretical work in time lags and
the stability of predator–prey interactions (Hutchinson,
1948; May, 1974; Cushing, 1977; Nisbet & Gurney, 1982).
In light of this body of theory, we might expect the stability
of beetle-aphid cycles to be a function of the scale of the
habitat in which they interact. However, as Cain (1991)
pointed out, there are limitations to the extrapolation of
diffusion-based analyses to predictions at larger spatial
and temporal scales.

The difference we saw in our experiments in beetle
responses for each spatial scale suggested that edge-
mediated behavior may be important in understanding
coccinellid behavior and foraging capabilities within and
around crop fields. The influence that habitat edges may
have upon local within- or between-habitat patches has
recently become the subject of much interest in both
theoretical and field-experimental circles (Fagan et al., 1999;
Cantrell et al., 2001; Schultz & Crone, 2001; Bommarco &
Fagan, 2002). In particular, in addition to moving dif-
ferently within habitat patches (i.e., experimental plots),
beetles may change their movement behavior as they
approach the boundary of the habitat (Bommarco &
Fagan, 2002).

Some of our previous work has shown that 

 

C. septem-
punctata

 

 preferentially colonizes weedy vegetation (which
often offers an array of nectar resources) in weed-crop
intercrops (Banks, 1999). Similarly, van der Werf et al.
(2000) found that 

 

C. septempunctata

 

 readily aggregate to
sugar-sprayed weedy vegetation, although prey density
and plant volatiles acted as additional colonization cues in
that study. While the present experiment was not designed
to gauge how beetles perceive their proximity to the edge of
the habitat plots or the quality of neighboring patches, our
results highlight the need for a better understanding of
how landscape features affect beetle movement. In par-
ticular, these results suggest that the spatial details of
augmentative releases of biological control agents (apart
from the overall spatial scale of plots in which they are
released) – especially the proximity of their release to
habitat boundaries or edges – may be critical to successful
predator retention in the habitat and the success of the
control effort.
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