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ABSTRACT The spatial pattern and probability distribution of Mexican bean beetle, Epilachna
varivestis Mulsant, egg masses were studied in four dry bean, Phaseolus vulgaris L., Þelds near
Scottsbluff, NE, during the 1994 and 1995 growing seasons. Sampling was conducted in a regular and
uniform grid to guarantee coverage of the Þeld. The experimental unit in all Þelds was 0.30 row-m,
and Þve measurements were made at 0.76-m intervals. A total of 12,290 locations was sampled.
Geostatistics and discrete statistics were used to describe the egg mass distribution. Regression was
used to detect and separate macroscale trends from the microscale variation. The presence of
macroscalevariation indicateda signiÞcantedgeeffectwithovipositing femalesmoving intodrybean
Þelds from their overwintering sites. Themicroscale variation estimated from the estimated residuals
from regressions to estimate trends was studied using semivariograms for all Þelds. Semivariograms
strongly indicate that Mexican bean beetle eggs are randomly distributed across the Þeld and that
this random distribution holds across 10-fold differences in population densities. As a result of the
signiÞcant macroscale trends observed, we conclude that egg mass densities may be greater in areas
of the Þeld near edges adjacent to beetle overwintering sites. The probability distribution that best
Þt the data was the negative binomial. Our results illustrate the importance of scale in discussing and
characterizing distribution. Although there is evidence of edge effect at the Þeld level, there is no
evidence of spatial dependence between egg samples at the sampling region level. At an even lower
level, the egg mass itself, eggs are aggregated.
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THE MEXICAN BEAN beetle, Epilachna varivestis Mul-
sant, is an important pest of dry bean, Phaseolus vul-
garis L. In western Nebraska, larval populations reach
their peak damage potential in late July to early Au-
gust. This period coincides with bean ßowering and
the beginning of the pod Þlling stages, which are the
most susceptible stages to defoliation injury.

Information on adult Mexican bean beetle distribu-
tion at an agronomic Þeld scale is not available. Mex-
ican bean beetle females lay clusters of eggs with
'40Ð60eggspercluster (Howard1924).Becauseeggs
are laid in masses and larvae do not greatly disperse
(Barrigossi 1997), larvaeandyoungadultsmayhavean
aggregated distribution. Adult Mexican bean beetles
have an aggregated distribution that varies with host
patch size in Phaseolus vulgaris patches of '1Ð10 m
(Turchin 1987, 1988). However, the distribution pat-
tern of older adults and egg masses themselves in
commercial-scale dry bean is not known. Egg mass
distribution is important for developing an integrated

pest management program for Mexican bean beetle,
because sampling for egg masses may be a valuable
method for assessing populations in dry bean Þelds.
First generation egg masses are laid before the canopy
is large and plants have begun to vine across rows,
whereas larvae and adults occur later when beans are
larger and viningmakes samplingmuchmore difÞcult.
Also, the possibility of inadvertently spreading patho-
gens is greater during sampling when the canopy is
large than earlier in the season.

Determining the probability distribution of a pop-
ulation (the proportions of 0, 1, 2, and so on in sam-
pling from a Þeld population) is necessary for estab-
lishing a sampling procedure (Southwood 1978).
Combined with knowledge of the spatial distribution
of the population (the spatial arrangement of individ-
uals in a habitat), the probability distribution allows a
more accurate estimate of the total injury produced
and, therefore, a better prediction of yield loss
(Hughes and McKinlay 1988). Patterns can be used to
decide which Þeld should be sampled Þrst and to
indicate in which part of the Þeld sampling should
start. It may be possible to restrict sampling to those
times and locations that provide themost information,
increasing sampling efÞciency. However, to reduce
sampling, it is important to understand how the spatial
relationship of the pest population changes with time
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(Schotzko and OÕKeeffe 1989, Schotzko and Knudsen
1992). Spatial distribution is affectedby factors suchas
uniformity of the habitat, age of the insect population,
host plantdensity (Bach1980,Turchin1987), and sites
available for occupation (Schotzko and OÕKeeffe
1989). Also, distribution patterns may change over
time (Schotzko and Knudsen 1992). Traditionally, ag-
gregation was measured as a function of mean and
variance. However, mean and variance alone are not
enough to describe variation across a spectrum of
spatial scale, because the spatial location of the sam-
ples is not taken into account (Taylor 1984). More-
over, the results are greatly dependent on the size of
sample units (Liebhold et al. 1993). An alternative is
to use geostatistics for describing spatial patterns.
Geostatistics uses information about both the value
and the location of samples to summarize the corre-
lation among points. These methods have the advan-
tage of characterizing spatial contagion across a spec-
trum of scales and directions. Therefore, geostatistical
methods provide better estimates of spatial depen-
dence than dispersion indices (Liebhold et al. 1991).

Geostatistical analysis tests whether the observed
value of a variable at one locality is independent of
values of the variable at neighboring localities. If de-
pendence exists, the variable is said to exhibit spatial
autocorrelation. If a value of the variable at one loca-
tion tends to be associated with a similar value at
neighboring localities, the spatial autocorrelation is
positive. If, instead, a value is dissimilar to neighboring
values, spatial autocorrelation is negative (Sokal and
Oden 1978). In entomology, spatial autocorrelation is
generally positive implying that sites with high pop-
ulation densities tend to be surrounded by high pop-
ulations and sites with low population densities tend
to be surrounded by low population densities.

Recently, two geostatistical tools have been imple-
mented in ecological studies: the semivariogram, for
modeling spatial dependence and kriging for making
estimates at unrecorded locations (Rossi et al. 1992).
Kriging generated maps have been used in area-wide
managementprograms for gypsymoth(Liebholdet al.
1991) and grasshopper (Johnson 1989). In this article,
we use semivariograms to describe spatial relation-
ships of Mexican bean beetle egg masses in dry bean.

Young and Young (1998) provide a review and
discussion of the calculation and use of semivario-
grams.Brießy, a semivariogramg(h) is aplot of 1/2 the
average squared difference of all points separated by
distance (h) versus those distances; that is

g~h! 5
1

2N~h! O
~ij!uhij'h

(ci 2 cj)
2, [1]

where N(h) is the number of pairs separated by dis-
tance h, ci is the value (number of egg masses) for the
Þrst member of the pair and, cj is the value for the
second member of the pair. The h indicates not only
the distance between points but also the direction. If
there is spatial variability and the variances are plotted
against their respective h values, the semivariogram
values will be small for low values of h, and will in-

crease with larger values of h (greater distances). The
values will eventually become constant after some
distance, indicating no further spatial inßuences
(Liebhold et al. 1993). Consequently, the shape of the
semivariogram provides a picture of the spatial de-
pendence between samples at different distances.

Spatial correlation between samples can occur at
different scales. For example, insect eggs might be
clumped on the leaf of a plant but the clumps of eggs
themselves may be randomly distributed over a Þeld.
It is important to distinguish between the trends at the
Þeld level versus correlation at some smaller level of
interest. Statistically, this is a question of homogeneity
in the sampling universe, or what is called intrinsic
stationarity (Young and Young 1998). To calculate
semivariograms, intrinsic stationarity is assumed. In
data setswhere this is not the case, suchaswhen insect
numbers are greater on one side of a Þeld than an-
other, thedata setmustbemodiÞedby removing these
trends. Identifying these trends is important both for
allowing the calculation of semivariograms and for
describing the biology of the spatial distribution of an
insect.

Semivariogram values can be computed either as
averages over all directions or speciÞc to a particular
direction. Usually, the analysis of spatial continuity
startswith anomnidirectional semivariogram inwhich
all possible directions are combined. Because the om-
nidirectional semivariogram is not affected by direc-
tion it is useful to reveal the best distance to produce
the clearest structure. If the omnidirectional semiva-
riogram does not produce a clear structure, better
results from directional semivariograms usually are
not expected (Isaaks and Srisvastava 1989). In ento-
mology, semivariograms have been used to demon-
strate spatial dependence in Lygus hesperus Knight in
lentil Þelds (Schotzko and OÕKeeffe 1989), Diabrotica
virgiferaLeConte in corn (Midgardenet al. 1993), and
Lymantria dispar (L.) in forests (Liebhold et al. 1991,
Sharov et al. 1996).

In this study, we use geostatistics to describe the
spatial variability of Mexican bean beetle egg masses
in drybeanÞelds. This description is basedon.12,290
total samples from four Þelds over 2 yr. The data set
includes high and low beetle population densities.
Once the spatial structure was described, it was pos-
sible to examine if the spatial structure for egg mass
densities was aggregated and varied from one sam-
pling area to another.

Materials and Methods

A Þeld study was designed to collect sufÞcient in-
formation to generate semivariograms for describing
the spatial structure of Mexican bean beetle egg mass
distribution. The study was conducted in Scottsbluff
during the 1994 and 1995 growing seasons in four dry
bean Þelds, referred to throughout this paper as Þeld
1Ð1994, Þeld 2Ð1994, Þeld 1Ð1995, and Þeld 2Ð1995.
Field 1Ð1994 (3.93 ha) was sampled from 29 June to 3
July 1994, and counts were made in 3,840 locations.
Field 2Ð1994 (4.21 ha) was sampled from 5 to 13 July
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1994, and counts were made in 5,210 locations. Field
1Ð1995 (4.78 ha) was sampled on 17 July 1995, and
counts were made in 1,695 locations. Field 2Ð1995
(3.77 ha) was sampled on 18 July 1995, and counts
were made in 1,545 locations. In total, 12,290 locations
were sampled, which provides a detailed data set for
examining spatial variability.

The sampling plan was designed on a regular grid to
guarantee coverage of the Þeld and to ensure any
directional trends in the data would be discovered.
Distances between neighboring sampling locations
ranged from0.76 to 15m in 1994, and from0.76 to 30m
in 1995 (Fig. 1). At each sampling location, a cluster
of Þve, 0.3-m sampling units were sampled. Four of
these sampling units were equally spaced at 0.76 m in
each cardinal direction from the central unit. This
sampling scheme ensured that spatial structure could
bemodeled for reasonably short distanceswith a good
estimate of the nugget effect (the distance between
the origin and Þrst point on the semivariogram). Also,
Þvemeasurements taken together at each location can
be combined in different ways to allow estimates of
statistics for different sample unit sizes. By comparing
these statistics, inferences canbemadewith respect to
the best sample unit size.

To facilitate sampling, ßags were used to mark the
center of the sampling cluster and to establish a grid
where sampleswould be taken. The experimental unit
was the same for all Þelds sampled and consisted of

0.3 m of row, centered about the ßag. All plants in that
0.3-m row space were checked for egg masses. The
contrast between theorange color of the eggswith the
green of the bean leaf facilitated the egg search. The
number of egg masses and the sampling location point
were registered for each sampling unit. At the con-
clusion of sampling, and before the ßags were re-
moved from the Þelds, data were organized according
to locations using X and Y co-ordinates. Maps con-
taining all sampling locations were drawn on graph
paper to ensure that no mistakes were made when
writing the distances in the Þeld. If a mistake was
found, the distances in the Þeld were immediately
measured.

As recommended for analyzing spatial patterns, an
exhaustive exploratory data analysis was undertaken
(Young and Young 1998). The Þrst step in spatial
descriptionwas to post all data locations to certify that
no mistakes were made when entering the data. Any
blank area indicating missing value was checked with
the Þeld map and with the original data set. The com-
puter software used for data posting was SURFER for
windows (GoldenSoftware 1994). Postplotswereuse-
ful to investigate any trends in values from one part of
the Þeld to another. In addition to the postplots, h-
plots and bivariate scatter plots of the egg mass counts
against their east and north directions were con-
structed to investigate any highly inßuential observa-

Fig. 1. Locations of the sites where egg mass data were collected. Each “1” represents cluster of Þve 0.3 row-m sampling
units equally spaced at 0.76 m from the central unit.

246 ENVIRONMENTAL ENTOMOLOGY Vol. 30, no. 2



tion and directional trends, which might affect esti-
mates of semivariances (SAS Institute 1985).

The question of directional trends in the data are
important, because spatial models generally assume
the response variable in question (here egg counts) is
intrinsically stationary (the mean does not vary over
the sampling region). For the data set to meet the
requirement of being intrinsically stationary, two
types of variation are recognized: large and small-scale
variation. Once large scale variation is removed, small
scale variation is described by semivariograms (see
Young and Young 1998 for additional details and dis-
cussion). Given the biology of Mexican bean beetle,
we expected, a priori, that large scale variation might
be associated with edge effects as beetles moved into
the Þeld to oviposite. Consequently, least square re-
gressions, involving polynomial functions of spatial
indices, were used to investigate and to remove large
scale variation so that small scale variation could be
used toaccount for the spatial dependence.Fourmod-
els (linear, quadratic, cubic, and quartic) were tried
using PROC GLM (SAS Institute 1985). Cubic trend
surface performedbest to remove large scale variation
(Þeld 1Ð1994: F 5 13.35; df 5 9, 3,825; P . F 5 0.0001,
r2 5 0.03; Þeld 2Ð1994: F 5 13.33; df 5 9, 3,825; P . F 5
0.0001; r2 5 0.03; Þeld 1Ð1995: F 5 34.42; df 5 9, 5,195;
P . F 5 0.0001, r2 5 0.06;. and Þeld 2Ð1995: F 5 34.42;
df 5 9, 5195; P . F 5 0.0001, r2 5 0.06). The equation
used was as follows:

Counti 5 b0 1 b1 ~easti! 1 b2 ~northi!

1 b3 ~easti * easti! 1 b4 ~easti * northi!

1 b5 ~northi * northi!

5 b6 ~easti * easti * easti!

1 b7 ~easti * easti * northi!

1 b8 ~easti * northi * northi!

1 b9 ~northi * northi * northi!, [2]

where i references individual grid points. The com-
plexity of this model is necessary because of the edge
effect associated with Mexican bean beetle oviposi-
tion.

After large scale trends were removed, the residuals
from the regression were then used to examine the spa-
tial dependence in the eggmass counts. Semivariograms
for all sampled Þelds were generated from the cubic
residuals of the trend using PROC VARIOGRAM (SAS
Institute 1996). PROC VARIOGRAM computes sample
semivariograms, grouping the pairwise distances with
LAGDISTANCE 5 and MAXLAG 5 options. Because
few points will be exactly h units apart, distances
close to h are included in the estimation of g(h).
LAGDISTANCE refers to the width of a distance
interval at with the pairwise distance interval will be
groupedandMAXLAGis thenumberof intervals. Semi-
variograms were computed using LAGDISTANCE 5
0.77 m and MAXLAG 5 100 m. The values established
for LAGDISTANCE and MAXLAG are reasonable
because there were sufÞcient pairs of observations
available for each lag spacing. Moreover, similar re-

sultswereproducedwith smaller values forMAXLAG.
These calculations of the semivariograms provide a
robust estimation and are not subject to inßuence by
a high proportion of zeros in the data set (Cressie
1991).

In addition to the geostatistical analysis, we tested
sevenconventional probabilitydistributions including
Poisson, Poisson with zeros, binomial, negative bino-
mial, double Poisson, Neyman type A, Poisson bino-
mial, and logarithmic with zeros. Data analysis started
with traditional descriptive statistics to compare the
distribution of egg mass counts, using the following SAS
procedures: PROC UNIVARIATE, PROC MEANS,
and PROC FREQ (SAS Institute 1985). The analysis
included descriptions of the spread of values such as
theminimum,maximumand interquartile range,mea-
sures of central tendency, such as, mean and median,
and measures of variability, such as the standard de-
viation, and coefÞcient of variation. In addition, skew-
ness and kurtosis were recorded to describe the over-
all shape of the distributions. To test if the hypothesis
that themeanandvariance ineach samplingÞeldwere
equal, a chi-square test (xp

2 5 [n 2 1] s2/x2) was
performed at a 5% level of signiÞcance. Because the
number of observations was high, the egg mass counts
were transformed using the formula

@2xp
2#21/2 2 @2~n 2 1! 2 1#21/2, [3]

(Young and Young 1998). This transformed variable n
as an approximate standard normal distribution under
the null hypothesis.

A Fortran program (Gates et al. 1987) for Þtting the
discrete frequency distributions was used to deter-
mine the probability distribution of egg mass popula-
tions. The eight possible distributions were tested and
the goodness-of-Þt was indicated by chi-square test.
Observations with an expected frequency value lower
thanÞvewerepooleduntil the sumexceededÞve.The
expected frequencies generated from the probability
distribution that best Þt the data were plotted in a
histogram togetherwith their respective observed val-
ues to visually compare observed and expected prob-
abilities.

Results and Discussion

Egg Mass Distribution and Geostatistics. The num-
bers of egg masses on all sampled dry bean Þelds are
represented in Fig. 2. Field 1Ð1994 was sampled early
in the season and the egg mass population was very
low (0.047 egg mass/row-m). The egg population at
the north side of the Þeld probably occurred because
dry bean was grown in the adjacent Þeld the year
before. Field 2Ð1994 was sampled 1 wk later and had
a higher population mean (0.483 egg mass/row-m),
and it also showed a trend of higher populations in the
northeast of theÞeld. Fields sampled in 1995 exhibited
similar patterns as in 1994. Field 1Ð1995 had a lower
mean (0.247 egg masses/row-m) than Þeld 2Ð1995
(0.647 egg masses/row-m), even though they were
sampled 1 d apart.
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Before estimation of the semivariograms, the as-
sumption of intrinsic stationarity of the error had to be
veriÞed (Cressie 1991). Intrinsic stationarity implies
that themeanvaluedoesnot changeover the sampling
region (Young and Young 1998). Regression analysis
revealed the presence of trends in three data sets,
violating the assumption of stationarity for semivario-
gram estimation. Macroscale variation was removed,
and semivariograms for all Þelds were estimated using
the residuals from Þtting the cubic trend surface.
Trend removal had a strong effect on the shape of the
semivariograms. The cubic trends were signiÞcant for
all Þelds, except for Þeld 1Ð1995. Therefore, spatial
representation changed signiÞcantly after trendswere
removed.

The biological meaning of signiÞcant macroscale
trends in three of four Þelds is that egg masses in the
Þelds were not randomly distributed at the Þeld level.
Fig. 2 indicates the rawvalues foreggmassdistribution
across Þelds, and Fig. 3 shows the distribution of these
egg masses as predicted by the cubic regression (sig-
niÞcant at the 0.05 level for all Þelds except Þeld
1Ð1995). The Þeld immediately north of Þeld 1Ð1994
was planted to dry bean in 1993 and was a likely
overwintering site and source of ovipositing Mexican
bean beetles in 1994. Similarly, dry bean Þelds were
located to the east of Þeld 2Ð1994 and Þeld 2Ð1995 in
the previous year. The greater numbers of beetles on
the east sides of these Þelds undoubtedly reßects
movement from overwintering sites. A dry bean Þeld
had been located immediately east of Þeld 1Ð1995 in
the previous year, therefore we might anticipate the

same pattern of egg mass distribution in this Þeld as in
Þeld 2Ð1994 and Þeld 2Ð1995. Substantially smaller
beetle populations in Þeld 1Ð1995 and the narrow
width (only 80 m) may have obscured movement of
beetles from the east. In total, the results of the mac-
roscale variation demonstrate a signiÞcant edge effect
with ovipositing females moving into dry bean Þelds
from their overwintering sites.

Standard omnidirectional semivariograms gener-
ated from each Þeld data set are presented in Fig. 4.
For all data sets, the general shape of the semivario-
grams is similar. All semivariograms are entirely ßat
and exhibit only a pure nugget effect. The only vari-
ation is that associated with the difference between
the Þrst measurement and the origin. These patterns
indicate that no detectable spatial dependence oc-
curred at the scales sampled. Interpretation of these
semivariograms indicates that egg masses are laid at
random; therefore, density at any sampled point has
no predictive value for egg mass density nearby. No
attemptwasmade todetermine spatial continuitywith
directional semivariograms because no spatial corre-
lation was found in omnidirectional semivariogram
(Isaaks and Srisvastava 1989).

The semivariograms in Fig. 4 strongly indicate that
Mexican bean beetle eggs are distributed randomly
and that this random distribution holds across 10-fold
differences inpopulationdensities (betweenmeansof
0.014 and 0.194 egg masses/0.3 row-m). In combina-
tion with the signiÞcant macroscale trends observed,
we can conclude that egg mass densities of Mexican
bean beetle may be greater in areas of the Þeld near

Fig. 2. Three-dimensional plots of Mexican bean beetle egg mass counts in four dry bean Þelds.
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edges adjacent to beetle overwintering sites (typically
where dry beans were grown the previous year). At
smaller scales (below Þeld level), there is no evidence
of spatial correlation among egg masses. Practically,
these results indicate that it may be more efÞcient to
sample Þeld edges near overwintering sites because
densities are likely to be greater. But egg mass distri-
bution within these areas will be random.

Egg mass distribution is not clumped, although eggs
themselves obviously are clumped in masses. Larvae
do not disperse far from the egg mass, typically no
more than 1.8 m from the egg mass and often within
0.6 m (Barrigossi 1997), so larval aggregation is a re-
ßection of oviposition via egg masses. Presumably,
pupal distribution and that of teneral adults would be
similar to that of larval Mexican bean beetles. Aggre-
gative behavior by Mexican bean beetle adults, re-
ported by Turchin (1987) is not reßected by patterns
of egg mass distribution in this study. Indeed, if egg
mass distribution is representative of female Mexican
bean beetle distribution, then this data set indicate
that females are not aggregated, at least during ovi-
position in commercial-scale dry bean Þelds. Because

previous work on adult Mexican bean beetle distri-
bution focused on relatively small habitat patches, it
may be that adult distribution at least as evidenced by
ovipositional patterns is more random where the re-
source (i.e., host plants) is less limiting.

Probability Distributions. The frequency distribu-
tion of the Mexican bean beetle egg masses was pos-
itively skewed in all Þelds sampled. In 1994, no egg
mass was found in 98.6 and 87.4% of the sampling units
in Þeld 1Ð1994 and Þeld 2Ð1994, respectively. In 1995,
the percentages of sampling units free of egg masses
were 93.5 and 84.9%, respectively, in Þeld 1Ð1995 and
Þeld 2Ð1995. Most of the infested sampling units had
only one egg mass, even though the range was higher
in 1995 (Fig. 5).

A chi-square test of the variance to mean ratio was
highly signiÞcant for all Þelds, indicating the null hy-
pothesis that the mean and variance are equal should
be rejected (Þeld 1Ð1994: x2(3,839) 5 4,058,P , 0.001;
Þeld 2Ð1994: x2(5,209) 5 6,063, P , 0.001; Þeld 1Ð1995:
x2(1,694) 5 2,191, P , 0.001; Þeld 2Ð1995: x2(1,545) 5
2,254, P , 0.001. Table 1 shows the chi-square values
for goodness-of-Þt to standard probability distribu-

Fig. 3. Three-dimensional plots of the estimated trends, by cubic regression, of Mexican bean beetle egg masses in four
dry bean Þelds.
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tions for all Þelds sampled. No distributions could be
tested for Þeld 1Ð1994, because too few classes were
available in the data set (i.e., all points were zero or
one). The null hypothesis tested was that the distri-
bution in question represents a good model for Þtting
the data (the observed equal the expected value).
Therefore, a signiÞcant chi-square indicates the dis-
tribution failed to Þt the observed data. As indicated
in Table 1, the null hypothesis could be accepted
(chi-square not signiÞcant) only for the negative bi-
nomial distribution in all Þelds in all years, although
the Newman type A distribution Þt the data for two of
three Þelds tested. Estimated K values from the neg-
ative binomial of three Þelds were 0.93, 0.28, and 0.49,
respectively, for Þeld 2Ð1994, Þeld 1Ð1995, and Þeld
2Ð1995. Given the very large number of samples used
toÞtdistributions(5,210 forÞeld2Ð1994, 1,695 forÞeld
1Ð1995, and 1,545 for Þeld 2Ð1995), it is somewhat
surprising that an adequate Þt was obtained for any
distribution.

It is important to distinguish between probability
distribution and spatial pattern. Often a signiÞcant Þt

to a probability distribution is used incorrectly as ev-
idence of spatial distribution, such as an aggregated
spatial distributionwith a signiÞcant Þt to the negative
binomial (Young and Young 1998). Properly, how-
ever, spatial distribution cannot be assumed from
probability distributions alone. Results from this study
clearly demonstrate this point. Although data Þt a
negative binomial probability distribution, the
geostatistical analysis demonstrates Þeld-level trends
in spatial distribution of egg masses and a random, or
spatially independent, distributionofeggmasses at the
sampling-region level.

Interpretation and Implications. Patterns of herbi-
vore dispersal are associated with the availability of
food (Crawley 1983), as well as other factors. Where
food distribution is patchy, beetle distribution is likely
to be patchy. In a large host site like a commercial dry
bean Þeld, we would not expect beetle distribution to
vary because of limited host differences. However,
even in large bean Þelds some heterogeneity is pos-
sible. For example, differences in plant densities
across a Þeld have been reported to result in greater

Fig. 4. Standard semivariogram plots of the Mexican bean beetle egg masses in four dry bean Þelds. g is the semivariance
for each lag distance.
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infestations of Mexican bean beetles with high plant
densities (Turner and Friend 1933). Similarly, differ-
ences in plant phenology within a Þeld might produce
variation in host use by adult Mexican bean beetles.

One effect of irrigating dry beans is to remove some
of the variation amongplants associatedwith different
availability of water across a Þeld. Consequently, in
irrigateddry beanproduction, plant conditions should

Fig. 5. Frequency distribution and summary statistics of Mexican bean beetle egg mass in dry bean Þelds.

Table 1. Chi-square and P-values testing the null hypothesis that the observed egg mass distribution fits a given distribution (therefore,
a significant chi-square shows lack of fit)

Distribution

1994 1995

Field 1 Field 2 Field 1 Field 2

x2 P-value x2 P-value x2 P-value x2 P-value

Poisson Ð Ð 83.1 ,0.01 27.3 ,0.01 67.4 ,0.01
Poisson with zeros Ð Ð 6.6 ,0.01 1.5 0.10 9.3 ,0.01
Binomial Ð Ð 237.9 ,0.01 41.3 ,0.01 116.8 ,0.01
Negative binomial Ð Ð 2.1 0.16 0.2 0.28 1.4 0.40
Double Poisson Ð Ð 5.2 0.01 2.0 0.08 10.7 ,0.01
Neyman type A Ð Ð 3.8 0.03 1.1 0.15 4.4 0.11
Poisson binomial Ð Ð 5.2 ,0.01 2.1 0.07 12.9 ,0.01
Logarithmic with zeros Ð Ð 0.5 0.24 0.5 0.42 11.4 ,0.01
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be sufÞciently uniform that substantial plant discrim-
inationby feedingorovipositingMexicanbeanbeetles
seems unlikely. Data in this study regarding oviposi-
tion supports this point.

Results of this spatial analysis will be useful in de-
veloping sampling plans for Mexican bean beetles.
Although populations across the entire Þeld should be
sampled, particular attention should be given to Þeld
edges near Mexican bean beetle overwintering sites,
whereeggmassdensitiesmaybe larger.Greater injury
to dry bean in these areas seems likely. Because the
semivariograms showed that spatial dependence did
not occur at scales below the Þeld level, sampling
locations within sections of the Þeld can be chosen at
random. Also, the random distribution of egg masses
and limited dispersal by larvae indicate that injury
from Mexican bean beetle should be randomly dis-
tributed within a given section of Þeld, although sec-
tions near edges by overwintering sites may experi-
ence more total injury. Despite the overall random
distribution of egg masses, some patchiness of injury
may be noted in association with individual egg
masses. The lack of spatial correlation between egg
mass samples at any distance indicates that in a sam-
pling program designed to estimate mean density, in-
dividual samples need not be separated by large dis-
tances.

The data set obtained in this study is the largest we
are aware of for characterizing an insect distribution.
Consequently, interpretations of data are not limited
by the size of the data set as often occurs. These
Þndings illustrate the importanceof scale in discussing
and characterizing distribution. At the Þeld level we
see evidence of edge effects, with higher egg mass
densities near Þeld edges associated with Mexican
bean beetle overwintering sites. At the sampling re-
gion level, we see no evidence of any spatial depen-
dence between egg mass samples. At an even lower
level, the egg mass itself, eggs are aggregated. Be-
cause larvae do not greatly disperse, larval distri-
bution and corresponding larval injury to dry bean
will be aggregated in plants around the oviposition
site of the egg mass. These results highlight the great
importance of scale when discussing distribution
patterns.

A Þnal point from these data and our analysis is the
illustration of the value of geostatistics in describing
distribution. Although our data set is perhaps excep-
tional, given the very large number of samples we
collected, geostatistical techniques do not require
such large sample sizes and can be used with much
smaller data sets. With the geostatistical analysis we
were able to describe macro and sampling region
distribution of Mexican bean beetle egg masses with
considerable detail. Additionally, our results dem-
onstrate the fallacy of associating probability dis-
tribution with spatial distribution. Our data do Þt a
negative binomial distribution, but this does not
mean the egg mass samples have an aggregated
spatial distribution. Indeed, semivariogram indicate
just the oppositeÑspatial independence between
egg mass samples.

Acknowledgments

WethankJohnFoster andLanceMeinke for reviewing the
manuscript. We thank Rick Patrick, Jon Thomas, Dasen
Ritchey, James Straeker, Christen Bateman, Marilou
Salomon, Matt Salomon, Preston Harimon, Scott Robinson,
and Judy Haberman for assistance with the sampling. This
work supported in part by University of Nebraska Agricul-
tural Experiment Station Projects 1Ð059 and 17Ð068. This is
article 12073 of the journal series of the Nebraska Agricul-
tural Research Division, University of Nebraska-Lincoln.

References Cited

Bach, C. E. 1980. Effects of plant density and diversity on
the population dynamics of a specialist herbivore, the
striped cucumber beetle Acalymma vittata (Fab.). Ecol-
ogy 61: 1515Ð1530.

Barrigossi, J.A.F. 1997. Development of an IPM system for
the Mexican bean beetle (Epilachna varivestis Mulsant)
as a pest of dry bean (Phaseolus vulgaris L.). Ph.D. dis-
sertation, University of Nebraska, Lincoln. NE.

Crawley, M. J. 1983. Herbivory. the dynamics of animal-
plant interactions. University of California Press, Berke-
ley.

Cressie, N.A.C. 1991. Statistics for spatial data. Wiley, New
York.

Gates, C. E., F. G. Ethridge, and J. D. Geaghan. 1987. Fit-
ting discrete distributions. UserÕs documentation for the
FORTRAN computer program DISCRETE. Texas A&M
University, College Station, TX.

Golden Software. 1994. SURFER forwindows.Golden Soft-
ware, Golden, CO.

Howard, N. F. 1924. The Mexican bean beetle in the east.
U.S. Dep. Agric. Farm. Bull. 1407.

Hughes, G., and R. G. McKinlay. 1988. Spatial heterogene-
ity in yield-pest relationships for crop loss assessment.
Ecol. Model. 41: 67Ð73.

Isaaks, E.H., andR.M. Srisvastava. 1989. An introduction to
applied geostatistics. Oxford University Press, New York.

Johnson, D. L. 1989. Spatial autocorrelation, spatial model-
ling, and improvements in grasshopper survey method-
ology. Can. Entomol. 121: 579Ð588.

Liebhold, A. M., X. Zhang, M. E. Hohn, J. S. Elkinton, M.
Ticehurst, G. L. Benzon, and R. W. Campbell. 1991.
Geostatistical analysis of gypsy moth (Lepidoptera: Ly-
mantriidae) egg mass populations. Environ. Entomol. 20:
1407Ð1417.

Liebhold, A. M., R. E. Rossi, and W. P. Kemp. 1993. Geosta-
tistics and geographic information systems in applied in-
sect ecology. Annu. Rev. Entomol. 38: 303Ð327.

Midgarden, D. G., R. R. Youngman, and S. J. Fleischer. 1993.
Spatial analysis of counts of western corn rootworm (Co-
leoptera: Chrysomelidae) adults on yellow stick traps in
corn: geostatistics and dispersion indices. Environ. Ento-
mol. 22: 1124Ð1133.

Rossi, R. E.,D. J.Mulla, A.G. Journel, andE.H. Franz. 1992.
Geostatistical tools for modelling and interpreting eco-
logical spatial dependence. Ecol. Monogr. 62: 277Ð314.

SAS Institute. 1985. SAS procedures guide for personal
computers. SAS Institute, Cary, NC.

SAS Institute. 1996. SAS/STAT technical report. Spatial
prediction using the SAS system. SAS Institute, Cary, NC.

Sharov, A. A., A. M. Liebhold, and E. A. Roberts. 1996.
Spatial variation among counts of gypsy moths (Lepidop-
tera: Lymantriidae) in pheromone-baited traps at ex-
panding population fronts. Environ. Entomol. 25: 1312Ð
1320.

252 ENVIRONMENTAL ENTOMOLOGY Vol. 30, no. 2



Schotzko, D. J., and L. E. O’Keeffe. 1989. Geostatistical de-
scription of the spatial distribution of Lygus hesperus
(Heteroptera: Miridae) in lentils. J. Econ. Entomol. 82:
1277Ð1288.

Schotzko,D. J., andG.R.Knudsen. 1992. Useof geostatistics
to evaluate a spatial simulation of Russian wheat aphid
(Homoptera: Aphididae) movement behaviour on pre-
ferred and non preferred hosts. Environ. Entomol. 21:
1271Ð1282.

Sokal, R. R., and N. L. Oden. 1978. Spatial autocorelation in
biology. 1. Methodology. Biol. J. Linn. Soc. 10: 199Ð228.

Southwood, T.R.E. 1978. Ecological methods with particu-
lar reference to the study of insect populations. Chapman
& Hall, London.

Taylor, L. R. 1984. Assessing and interpreting the spatial
distributions of insect populations. Annu. Rev. Entomol.
29: 321Ð357.

Turchin, P. 1987. The role of aggregation in the response of
Mexican beanbeetles to host-plant density.Oecologia 71:
577Ð582.

Turchin, P. 1988. The effect of host-plant density on num-
bers of Mexican bean beetles, Epilachna varivestis. Am.
Mid. Nat. 119: 15Ð20.

Turner, N., and R. B. Friend. 1933. Cultural practices in
relation to Mexican bean beetle control. J. Econ. Ento-
mol. 26: 115Ð123.

Young, L., and J. Young. 1998. Statistical ecology: a popu-
lation perspective. Kulwer, Boston, MA.

Received for publication 19 February 1998; accepted 7 De-
cember 2000.

April 2001 BARRIGOSSI ET AL.: MEXICAN BEAN BEETLE EGG MASS POPULATIONS IN BEAN 253


