Encyclopedia of Entomology
Springer Science+Business Media B.V. 2008
10.1007/978-1-4020-6359-6_1944
John L. Capinera
Ladybird Beetles (Coccinellidae: Coleoptera)

J. H. Frank2 and R. F. Mizell III3

(2)  University of Florida, Gainesville, FL, USA
(3)  University of Florida, Quincy, FL, USA

Without Abstract

“Ladybird” is a name that has been used in England for more than 600 years for the European beetle Coccinella septempunctata L. As knowledge about insects increased, the name ladybird became extended to all its relatives, members of the beetle family Coccinellidae. Of course these insects are not birds, but butterflies are not flies, nor are dragonflies, stoneflies, mayflies, and fireflies, which all are true common names in folklore, not invented names. The lady for whom they were named was “the Virgin Mary,” and common names in other European languages have the same association (the German name Marienkafer translates to “Marybeetle” or ladybeetle). Prose and poetry mention ladybird, perhaps the most familiar in English being the children’s rhyme:

“Ladybird, ladybird, fly away home,

Your house is on fire, your children all gone...”

In the U.S.A., the name ladybird was popularly Americanized to ladybug, although these insects are beetles (Coleoptera), not bugs (Hemiptera). Then, the Entomological Society of America decreed that the official name in the USA should be “ladybird beetle.” Elsewhere in English-speaking countries it is still ladybird. Now the word ladybird applies to a whole family of beetles, Coccinellidae or ladybirds, not just Coccinella septempunctata. There are many species of ladybirds (almost 6,000 now known worldwide). The number of bird species known worldwide is somewhat more than 9,000. Regrettably, newspaper writers are prone to writing about “the ladybird” and erroneously referring to species of ladybirds as “varieties,” although few or none of them would write about “the bird” and consider that bird species (from auks through eagles to hummingbirds), are “varieties.” Many ladybird species are considered beneficial to humans because they eat phytophagous insects (“pests of plants,” often called “plant pests”), but not all eat pests of plants, and a few are themselves pests.


Classification
Coccinellidae are a family of beetles belonging to the superfamily Cucujoidea, which in turn belongs to the series Cucujiformia within the suborder Polyphaga of the beetles (Coleoptera). Their relatives within the Cucujoidea are the Endomychidae (handsome fungus beetles) and Corylophidae (minute fungus beetles). The classification of lady beetles is:
  Order Coleoptera
  Suborder Polyphaga
  Series Cucujiformia
  Superfamily Cucujoidea
  Family Coccinellidae

The internal classification of the family into tribes and subfamilies is not settled because there are competing systems, none of them clearly correct. In this article, mention of species is grouped according to the food of adults and larvae, an ecological rather than phylogenetic grouping. When subfamilies and tribes are mentioned, it must be understood that these classifications are not universally accepted.

More than 480 species are currently reported to occur in America north of Mexico, just 44 in the British Isles, and 600 in Australia. Most of the 480+ in America north of Mexico are considered to be native, and others to be adventive (having arrived from somewhere else and established feral populations). Among the adventive species, some were introduced (introduced deliberately), and others are immigrants (having arrived by any means except deliberate introduction).


Description

Ladybird adults are oval, range in length from about 1 mm to over 10 mm depending upon species, and have wings. Females on average are larger than males. Adults of some species are brightly colored. Their mandibles are used for chewing. Adult ladybirds are able to reflex-bleed from the tibio-femoral articulations (leg joints). The blood (hemolymph) is repellent by having a repulsive smell as well as containing (in some species) various alkaloid toxins (adaline, coccinelline, exochomine, hippodamine, etc.). The hemolymph is yellow and its repellency and toxicity are believed to be a defense mechanism against predators. Some people have claimed that the bright (red on black, or black on red) colors of some adult ladybirds are aposematic, which is to say that the colors warn would-be predators that the beetles are distasteful or toxic.

The immature stages (eggs, larvae, and pupae) also contain the toxins that their adults have. Toxins are said to be produced by dorsal glands in the larvae. Eggs are elongate-ovoidal, and in just a few species are protected by secretions of the adult female. Cannibalism of eggs, larvae and pupae is common, especially when prey is scarce. Larvae are mobile, and in some species (for example of Scymnus and Cryptolaemus) are protected by waxy secretions. Pupae are unprotected by a cocoon (some other beetles pupate in a cocoon) but larvae may wander some distance from feeding sites (where they may be at risk from cannibalism) before pupating.


Life Cycle and Behavior

Ladybird eggs are laid in clusters by at least most aphid-eating species and singly by at least most scale-insect-eating species. Eggs produce larvae that undergo four instars before pupating, metamorphosing, and giving rise to adults. One scale-eating ladybird is reported to have only three instars. Ladybirds may have one or, more typical of warmer climates, several generations each year, and reproduction is slowed or halted by cooler winter weather, when adults may hibernate. In hot, dry climates, ladybirds may aestivate (become inactive) during the hottest months.

Ladybirds that feed on aphids develop faster, age faster, move faster, typically are larger, and lay their eggs in clusters. Those that feed on scale insects develop more slowly, live longer, move more slowly, typically are smaller, and lay their eggs singly.


Food
Pest Species – Feeding on Plants

Adults and larvae of the subfamily Epilachninae feed on plants. Some 500 species are known worldwide. In America north of Mexico, this subfamily is represented only by Epilachna borealis (Fabricius) and E. varivestis Mulsant. Epilachna borealis, the squash beetle, feeds on members of the squash family (Cucurbitaceae). Epilachna varivestis, the Mexican bean beetle, feeds on members of the bean family (Leguminosae). Mexican bean beetle is native to southern Mexico, but it is an immigrant to the USA, first detected in the west in 1849. Now, its distribution is from Costa Rica north through Mexico to the Rocky Mountain states of the USA, and with a separated eastern population which extends southward to northern Florida. In the eastern USA, it has been controlled efficiently by annual releases of the parasitoid wasp Pediobius foveolatus (Crawford) (Eulophidae). This wasp was initially imported from India, where it attacks Henosepilachna sparsa (Herbst), which likewise belongs to Epilachninae. Epilachna philippinensis Dieke, a pest of solanaceous crop plants in the Philippines, has been the object of a biological control program by Pediobius epilachnae (Rohwer), native to parts of the Philippines.

Innocuous Species – Feeding on Mildews

Ladybirds of the tribe Halyziini (until recently called Psylloborini, of the subfamily Coccinellinae) feed on fungal growths (mildews, Ascomycetes: Erysiphales) on the leaves of plants. Their greatest species diversity is in the tropics, with only six species in America north of Mexico. One of them is the West Indian Psyllobora nana Mulsant which has invaded the extreme south of Florida. In the neotropics, the coccinellid genus Neocalvia feeds on larvae of Halyziini.

Predatory Species – Feeding on Mites

Adults and larvae of the tribe Stethorini (of the subfamily Scymninae) feed on tetranychid mites. The tribe is distributed worldwide, and has only one genus. There are five species in America north of Mexico. An example is Stethorus utilis (Horn), a minute ladybird which is distributed in the coastal plains of the southeastern states from North Carolina south through Florida and west through Texas. Another is S. punctillum Weise, a European species that was reported in 1950 as detected in Ontario and Massachusetts.

Predatory Species – Feeding on Whiteflies

Four species in America north of Mexico appear to be more-or-less specialized predators of whiteflies. They are Delphastus catalinae (Horn), D. pallidus (LeConte), and D. pusillus (LeConte) (tribe Serangiini), and Nephaspis oculatus (Blatchley) (tribe Scymnini). The first and probably the fourth seem to be immigrant species from the Neotropical region. The others (D. pallidus and D. pusillus) are considered to be native. After D. pusillus was found to be a very useful biological control agent against sweetpotato whitefly (Bemisia tabaci (Gennadius)) including the “form” that later was named silverleaf whitefly (Bemisia argentifolii Bellows and Perring), “it” was exported from Florida to California and made available commercially and used in other parts of the USA. Somehow this resulted in commercial biological control companies selling D. catalinae under the name D. pusillus.

Predatory Species – Feeding on Cottonycushion Scale

Cottonycushion scale (Icerya purchasi Maskell), native to Australia, belongs to the family Margarodidae (commonly called “ground pearls,” although this name hardly fits this species) in the superfamily Coccoidea (scale insects). It is a major pest of citrus, and an important pest of several other trees and shrubs including Acacia, Casuarina, and Pittosporum. After its arrival in California, presumably as a contaminant of imported plants, it threatened to ruin California’s citrus industry in the late 1800s. It was controlled by importation, release, and establishment (as classical biological control agents) of Rodolia cardinalis (Mulsant) and a parasitoid fly, Cryptochetum iceryae (Williston). When cottonycushion scale became a problem in many other countries, R. cardinalis was the biological control agent of choice, so stock of it has been shipped to other continents and countries.

Predatory Species – Feeding on Mealybugs

Mealybugs are the homopterous family Pseudococcidae, which includes some notable pests of plants. Cryptolaemus montrouzieri Mulsant, a ladybird native to Australia, is a notable predator of mealybugs. It was introduced into California first in 1891, and some time later from California into Florida. It has been marketed commercially as a control agent for mealybugs and is often effective, but has one unfortunate characteristic: its larvae produce waxy filaments making them look to the uninitiated like their mealybug prey. Many owners of plants have sprayed the larvae with chemicals in the mistaken belief that they are pests. This misidentification must be overcome by education. Cryptolaemus montrouzieri does not confine its attentions to mealybugs, and also eats soft scales (Coccidae) and armored scales (Diaspididae). Such a catholic diet is normal for a long list of ladybirds, so that their diet cannot neatly be pigeonholed as armored scales or soft scales or mealybugs – they may eat some prey in all of these families, and a few of the larger ones may even eat an aphid from time to time. For that reason, many genera and species are placed below under “Feeding on Scale Insects.”

Predatory Species – Feeding on Armored Scale Insects

Some species appear to feed largely or entirely on armored scale insects (Diaspididae). Examples include Microweisea coccidivora (Ashmead), M. misella (LeConte), and M. ovalis (LeConte) of the tribe Microweiseini, Zilus horni Gordon, Z. eleutherae Casey, and Z. subtropicus (Casey) of the tribe Scymnillini, and Cryptognatha nodiceps Marshall of the tribe Cryptognathini. One of these, Cryptognatha nodiceps, is not native to America north of Mexico, having been imported in the 1930s, released, and established as a classical biological control agent for coconut scale (Aspidiotus destructor Signoret).

Predatory Species – Feeding on Scale Insects

A large trophic group has scale insects as its prey, meaning members of the superfamily Coccoidea (the scale insects). This superfamily includes various related families, notably Coccidae (soft scales), Diaspididae (armored scales), Pseudococcidae (mealybugs), Dactylopiidae (cochineal scales), Kermesidae (gall-like scales), Eriococcidae (felt scales), Cerococcidae (ornate pit scales), and Asterolecaniidae (pit scales). Examples of ladybird genera belonging to this group are: Decadomius, Diomus, Nephus, and Scymnus (all in tribe Scymnini), Brachiacantha, Hyperaspidius, and Hyperaspis (all in tribe Hyperaspini), Axion, Chilocorus, Curinus, and Exochomus (all in tribe Chilocorini), Rhyzobius (tribe Coccidulini), and Azya (tribe Azyini). It is not yet clear how, or whether, they divide up the scale insects between them, because reliable prey records are too incomplete. However, there is at least some level of prey specialization in these (and the three aforementioned groups) that feed on scale insects, which seems not to be the case for the next-discussed trophic group (those that feed on aphids). Brachiacantha has a curious life history in that its larvae so far as is known feed on scale insects within ant nests.

Rhyzobius lophanthae (Blaisdell) was introduced to California from Australia in 1892 to control scale insects, and somehow later made its way to Florida (there is no record of an early introduction into Florida). Chilocorus circumdatus (Schoenherr) [other writers give the author name as Gyllenhal] is native to southeastern Asia and is adventive in Australia; it was imported from Australia to the U.S.A. and was released in Florida in 1996 against citrus snow scale, Unaspis citri, and is established. Azya orbigera Mulsant is an immigrant from the Neotropical region. Decadomius bahamicus (Casey) is an immigrant from the Caribbean or the Bahamas or Bermuda. Diomus roseicollis Mulsant is an immigrant from Cuba.

Predatory Species – Feeding on Aphids
Adults and larvae of many species (the tribe Coccinellini) probably feed primarily on aphids. Amomg many others, they include Coccinella novemnotata Herbst, C. septempunctata L., Coelophora inaequalis (F.), Coleomegilla maculata DeGeer, Cycloneda munda (Say), Cycloneda sanguinea (L.), Harmonia axyridis Pallas, Harmonia dimidiata (Fabricius), Hippodamia convergens Guérin-Méneville, Mulsantina picta (Randall), Naemia seriata (Melsheimer), Neoharmonia venusta (Melsheimer). Although Olla v-nigrum Casey feeds on some aphid species, it has been shown to be an important predator of psyllids (Figs. 16 and 17).
Frank08.files/978-1-4020-6359-6_12_Part_Fig16-1944_HTML.jpg
Ladybird Beetles (Coccinellidae: Coleoptera), Figure 16 Ladybird beetles: Olla v-nigrum eggs (a), larva (b), prepupa (c, left) and pupa (c, right), and adult (d). This species is dimorphic in the adult stage and also occurs as an orange beetle with small black spots. Vedalia beetle, Rodolia cardinalis: adult (e) and larva (f) feeding on cottony cushion scale. This beetle saved the California citrus industry from destruction by cottony cushion scale.

Frank08.files/978-1-4020-6359-6_12_Part_Fig17-1944_HTML.jpg
Ladybird Beetles (Coccinellidae: Coleoptera), Figure 17 Larvae and adults of some ladybird beetles: Azya orbigera larva (a) and adult (b). This species is typical of those that produce waxy secretions in the larval stage. The multicolored Asian ladybird beetle, Harmonia axyridis, larva (c) and adult (d). This species, though predatory, has become a serious nuisance due to its habit of aggregating in buildings during the winter. Mexican bean beetle, Epilachna varivestis, larva (e) and adult (f). This species is one of only a small number of phytophagous ladybird beetle species.

Four of these, C. septempunctata (from Europe), C. inaequalis (from Australia), H. dimidiata (from China), and H. axyridis (from Japan) were introduced into North America, although there is some doubt that the presence of C. septempunctata and H. axyridis is due to introduction; their presence may be due to immigration, albeit as hitchhikers aboard ships.

Two of these genera, Coleomegilla and Mulsantina, include adelgids (Adelgidae), which are closely related to aphids, in their diet. Further, Coleomegilla also includes pollen whereas Mulsantina also includes scale insects in the broad sense.


Alternative Food

Ladybird larvae and adults may supplement their normal prey in times of scarcity with other types of food. They consume flower nectar, water and honeydew – the sugary excretion of piercing-sucking insects such as aphids and whiteflies – or pollen. Many plant species also contain organelles in locations on the plant other than the flower – termed extrafloral nectaries – that produce a nutrient-laden secretion. While it was first thought that extrafloral nectaries were used by the plant for excretion, it is well substantiated that most plants actually use the extrafloral nectaries to attract predators and parasites for protection from their herbivores. Over 2,000 species of plants in 64 families have extrafloral nectaries. Extrafloral nectaries may be located on leaf laminae, petioles, rachids, bracts, stipules, pedicels, fruit, etc. Ladybirds often use the secretions from extrafloral nectaries in their diet and are just some of the many beneficial insects that use extrafloral nectary secretions.


Natural Enemies
All insects have predators, parasites/parasitoids, and/or pathogens. Ladybirds are not exempt. Larvae of Epilachna borealis and E. varivestis are attacked by a North American tachinid fly (Aplomyiopsis epilachnae (Aldrich)) which specializes in the genus Epilachna. Larvae of E. varivestis also are attacked by an introduced eulophid wasp (Pediobius foveolatus, see above). Another native tachinid fly, Hyalmyodes triangulifer (Loew), is less specialized, attacking larvae not only of Epilachna varivestis, but also of Coleomegilla maculata, several weevils, and a pterophorid moth. Perhaps the best known of the parasitoids of ladybirds is the braconid wasp Perilitus coccinellae (Schrank). It attacks adult ladybirds and to a lesser extent larvae and pupae of Coccinella septempunctata, Coleomegilla maculata, and several other species. Microsporidial diseases include Nosema hippodamiae Lipa and Steinhaus, N. tracheophila Cali and Briggs, and N. coccinellae Lipa (Fig. 18).
Frank08.files/978-1-4020-6359-6_12_Part_Fig18-1944_HTML.jpg
Ladybird Beetles (Coccinellidae: Coleoptera), Figure 18 Some typical adult ladybird beetles: Curinus coeruleus (a), Coleophora inaequalis (b), Coccinella septempunctata (c), Hippodamia convergens (d), and Cryptolaemus montrouzieri (e).

Use of Ladybirds in Biological Control

Most species of ladybirds are considered beneficial because they are predators of Hemiptera: Sternorrhyncha or Acarina, many of which are considered to be pests. These predatory ladybirds contribute to the regulation of populations of their prey, and in some situations contribute a high level of regulation. When ladybirds naturally contribute a high level of control of pests, or in combination with other predators and/or parasitoids and diseases contribute a high level of population regulation of pests, people may benefit. That is to say that gardeners, growers and farmers may benefit, at no cost, because they have no or negligible pest problems.

Sometimes, gardeners mistake the ladybird larvae for pests and spray chemical pesticides that kill them (this is much less of a problem with growers and farmers because they have more experience). The result is increased problems from real pests. The answer is a constant educational effort to inform people about ladybirds and what their larvae look like. This effort cannot end, because people knowing nothing about ladybird life cycles are born each minute.

One type of biological control is thus called manipulative biological control (of which a subset is conservation biological control). The objectives are simply to capitalize on the ladybirds (or other beneficial organisms) that already are present, to make conditions as favorable as possible for them (manipulation), and especially to avoid spraying chemicals (insecticides, fungicides, or herbicides) that will harm them (conservation).

A second type of biological control is augmentative biological control. This begins with the recognition that ladybirds in a given pest situation are present but too few to do the job required, and buying more from a commercial producer to release to augment those already present. A risk is that if adult ladybirds are released, many of them may fly away. But, if ladybird larvae are released, they have the option of eating the pest with which they are presented, or starving – they cannot fly away. Obviously, this requires matching the pest to a purchased ladybird species that will eat that pest (see above for species options). The rub here is that the number of purchased ladybirds needed for a given pest situation may not have been worked out in detail – it demands a huge amount of practical experience to tie down the details for at least hundreds of situations. Documentation of this experience is progressing very slowly.

A third type of biological control is classical or inoculative biological control. Here, some individuals of a ladybird (or other) species that is not already present are released in the hope that they will establish a population and eventually control the pest that is of concern. Classical biological control typically applies to a situation in which a new pest has invaded, and researchers (from a university, or a national or state department of agriculture) import and release a ladybird (or other kind of organism) that is believed to control the pest elsewhere. Typically, the imported ladybird (or other organism) becomes established or does not become established; if it becomes established, it may or may not control the pest in this new situation. Typically, the foregoing things are done under the name of “research,” and either are cost-free to gardeners, growers and farmers (especially if done by state or federal departments of agriculture) or, if done by university researchers, then gardeners, growers and farmers are asked to contribute toward a grant that will pay for the cost of importation and research on the biological control agent (but subsequently, after it has become established, there are no further costs). The archetypical example is control of cottonycushion scale of citrus by the introduced ladybird Rodolia cardinalis. Although chemical pesticides of the time were failing to control it, and although it threatened to ruin California’s citrus industry, nobody was willing to invest funds in biological control research. Nevertheless, biological control research was “bootlegged” onto other operations by dedicated researchers, was astoundingly successful, and saved California’s (and later Florida’s) citrus industry from ruin: there was no subsequent need to use chemicals against this pest, thus saving billions of dollars as against a trivial expenditure (about $1,500 at the time, for foreign travel).

Glasshouses (greenhouses) provide a habitat for plants and pests and biological control agents that differs from outdoor habitats. Typically, culture begins with initiation of a crop of plants that has no pests (or seems to have none). But then pests somehow show up, and there are no ladybirds (or other organisms) to control them. The situation is very much like that of classical biological control, and ladybirds (and/or other beneficial organisms) released into the greenhouses may control the pests and eliminate need to use chemical pesticides. Here, the question is not about funding new research into a new pest, but into buying the right numbers of ladybirds (or other organisms) of the appropriate species to control a pest that has already been researched. For many such situations, ladybirds (or other organisms) can be purchased from commercial supply houses to control the pest(s).


Commercial Availability

The following is a partial species list of commercially available ladybirds posted on the California Department of Food and Agriculture’s website, which can be accessed to provide information about commercial suppliers in Canada, Mexico and the USA in 1997 (it is not up-to-date). The URL (http://www.cdpr.ca.gov/docs/ipminov/bensuppl.htm) still works.

Coleomegilla maculata – a predator of aphids.

Cryptolaemus montrouzieri – a predator of mealybugs.

Delphastus pusillus – a predator of whiteflies.

Harmonia axyridis – a predator of aphids.

Hippodamia convergens – a predator of aphids. Some suppliers do not rear the beetles but collect overwintering adults from the mountains of eastern California; these overwintering adult beetles (i) may be heavily parasitized and many may die, and (ii) may be programmed at the end of the winter to end the hibernation by flying west, which may do you no good if they all take to flight and leave your property.

Rhyzobius lophanthae – a predator of scale insects.

Rhyzobius ventralis – this name is listed in error, it should be called Rhyzobius forestieri (Mulsant).

Stethorus picipes – a predator of tetranychid mites; this name is listed in error, it should be called Stethorus punctum picipes Casey, a subspecies of Stethorus punctum (LeConte).

Stethorus punctillum – a predator of tetranychid mites.

Commercial suppliers of biocontrol agents in Australia are listed by the Association of Beneficial Arthropod Manufacturers (ABA: http://www.gc.goodbugs.org.au), and some of these suppliers sell ladybirds. Commercial suppliers of biocontrol agents in Europe (and some other countries around the world) are listed by the International Biocontrol Manufacturers Association (IBMA: http://www.ibma.ch), and some of the listed companies sell ladybirds. Commercial suppliers belonging to the Association of Natural Biocontrol Producers, a North American Organization, are listed (ANBP http://www.anbp.org). By examining the individual sites of these companies, you may determine what ladybird species are available and, from the websites of some of these companies, some of the characteristics of the species available.

There is yet no website listing insect cultures available worldwide for purchase, with a list of suppliers for each species. Insect Production Services, Natural Resources Canada, is beginning to compile such a list (http://www.insect.gflc.cfs.nrcan.gc.ca).

However, just because a biocontrol agent such as a ladybird species (or subspecies), is available somewhere in the world for purchase, does not necessarily mean you will be able to obtain it. Your own national (and perhaps provincial or state) department of agriculture (or some other government agency) may regulate importations. It is most probable that you will only be able to import species (and subspecies) that already exist in your area. For example, all shipments of living insects into Florida are required to have permits from the Florida Department of Agriculture and Consumer Services, Division of Plant Industry; in general, a permit will be supplied for importation of species (and subspecies) that already occur in Florida. It is the vendors who are required to obtain the permits for commercial shipments. Furthermore, no reputable producer is likely to ship living ladybirds to you unless there is a rapid commercial shipper. Stated policies of some international shippers (e.g., Federal Express, DHL, UPS) say that they will not accept consignments of living animals (including insects) for reasons that they do not explain. The lesson is that you should buy from a local supplier wherever possible.

Despite all the difficulties in purchase and shipment, some biocontrol producers can provide you with a good product rapidly. Please see the website of the Belgian producer Biobest (http://www.Biobest.be), which also has websites in other countries (at least Canada, France, Greece, and Spain) as an example of how it can work. That company provides you an online description of the product and what it can do.

Four ladybird species (Coleomegilla maculata, Cryptolaemus montrouzieri, Harmonia axyridis, and Hippodamia convergens) have been reared on purely artificial diets, thus promising to reduce labor costs and thus the price of commercially available ladybirds. Diets for others may now be available or under development.


The Downside of Ladybirds

The great success of the imported Rodolia cardinalis in controlling cottonycushion scale in California and then in various countries around the world led to great enthusiasm among growers to attempt importation of additional ladybirds to control a long list of pests of plants. Many of these additional ladybirds failed to establish where they were introduced. Others became established but did not provide the required level of control. Relatively few achieved the required level of control. One of the reasons for success of R. cardinalis was its high level of specialization to cottonycushion scale – it would control that pest effectively, but no others.

Growers of many crops encounter pest aphids. Ladybirds that prey on aphids are widely distributed, and native ladybirds are often recruited to aphid infestations on crop plants in North America and elsewhere. Perhaps it was a sense of lack of effectiveness of native ladybirds in rapid and complete control of aphid infestations that led to attempts to import additional aphid-feeding ladybird species into North America. At all events, considerable effort was made by USDA entomologists (in collaboration with state and university entomologists) to import the Eurasian Coccinella septempunctata and the Asian Harmonia axyridis to eat more aphids than were consumed by native ladybirds. Whether those efforts succeeded or whether those two ladybird species arrived as immigrants is unclear, but eventually both species became established and spread widely. They proved to be more successful than native ladybirds at controlling aphids in general, and their populations grew and spread. Perhaps if this had happened in the 19th century the success would have been welcomed. But, by the late twentieth century, it was their side-effects that received publicity – there is some evidence that in some places native ladybird populations have declined because of the efficiency of the introduced ladybirds in killing aphids and thus denying food to the native ladybirds. It is undeniable that adult H. axyridis may hibernate in some places (loosely constructed houses, railway electrical boxes, etc.) where they are not welcome. It matters little that houses and railway electrical boxes should and could have simple physical screens to exclude insects (building codes in the southern U.S.A. require screening of houses against mosquitoes) because the public has become incensed against H. axyridis. The era of importation of generalist biological control agents has ended (even, for example, those that feed on many aphid species but no other prey may no longer be welcome), and only specialists may in future be permitted.


References

Dixon AFG (2000) Insect predator-prey dynamics: ladybird beetles and biological control. Cambridge University Press, New York, NY
 
Gordon RD (1985) The Coccinellidae (Coleoptera) of America north of Mexico. J New York Entomol Soc 93:352–599
 
Hodek I, Honěk A (1996) Ecology of Coccinellidae. Kluwer Academic Publishers, Dordrecht, The Netherlands, 464 pp
 
Kuznetsov VN (1997) Lady beetles of the Russian Far East. Center for Systematic Entomology, Gainesville, FL (Memoir No. 1)
 
Vandenberg NJ (2000) Coccinellidae Latreille 1807. In: Arnett RH, Thomas MC, Skelley PE, Frank JH (eds) American beetles, vol 2. CRC Press, Boca Raton, FL, pp 371–389