
INTRODUCTION

In many phytophagous insects, the immature
stages have little opportunity to change their
developmental location (Renwick 1989; Mayhew
1997). Therefore, the fate of the immature insects
is largely dependent on host selection by oviposit-
ing females. It is often assumed that ovipositing
females will show a strong preference for plants
that enhance the performance of their offspring.
However, the existing data range from good cor-
respondences between oviposition preferences of

females and larval performance, to very poor 
correspondences (reviewed by Thompson 1988;
Thompson & Pellmyr 1991). Therefore, elucidat-
ing the degree of preference–performance corre-
spondences and the factors that cause observed
correspondences has been considered to be the crux
of understanding the coevolution between phy-
tophagous insects and their host plants (Wiklund
1975; Thompson 1988; Jaenike 1990; Thompson
& Pellmyr 1991; Mayhew 1997, 1998).

In the past two decades, much information 
has been gathered indicating that intraspecific 
variation in host plants, as well as interspecific 
differences among hosts, play an important role 
in shaping insect–plant associations in natural
systems (Edmunds & Alstad 1978, 1981; Denno 
& McClure 1983; Fritz et al. 1987; Maddox & 
Root 1987; Fritz 1990; Price et al. 1990; Senn 
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et al. 1992; Weis & Campbell 1992; Suomela 
& Nilson 1994; Mopper 1996). Consequently, 
the problems of preference–performance correspon-
dence have come to be considered not only at the
interspecific host-plant level but also at the
intraspecific individual host-plant level (Rausher &
Papaj 1983; Leather 1985; Karban & Courtney
1987; Taylor & Forno 1987; Damman & Feeny
1988; Craig et al. 1989, 2000; Valladares & Lawton
1991; Horner & Abrahamson 1992; Larsson &
Strong 1992; Underwood 1994; Larsson et al.
1995). At the intraspecific level, both good corre-
spondences (Whitham 1981, 1983; Leather 1985;
Damman & Feeny 1988; Anderson et al. 1989; Price
et al. 1990) and poor ones (Karban & Courtney
1987; Taylor & Forno 1987; Valladares & Lawton
1991; Horner & Abrahamson 1992; Larsson &
Strong 1992; Underwood 1994; Larsson et al. 1995;
Craig et al. 1999, 2000) have been found.

Previously, we reported considerable intra-
specific variation exists in the thistle Cirsium
kamtschaticum Ledeb. (Asteraceae) as a main 
host plant of the phytophagous ladybird beetle 
Epilachna pustulosa Kôno (Coccinellidae) (Fujiyama
& Katakura 1997). When leaves sampled from the
field were offered in laboratory, the thistle showed
qualitative intraspecific variation affecting both
adult female feeding preference and larval perfor-
mance of E. pustulosa. Furthermore, female beetles
preferred the clone on which larval performance was
better (Fujiyama & Katakura 1997). Therefore, 
E. pustulosa showed rather good preference–perfor-
mance correspondence at the intraspecific level of
host-plant variation (interspecific level correspon-
dence are rather weak or more complicated: see
Fujiyama & Katakura 1997; Yamaga & Ohgushi
1999). This suggests strongly that qualitative
intraspecific variation in the thistle has had a large
impact on shaping its association with E. pustulosa,
although the possible effects of other factors (such
as thistle abundance and availability, predators,
competitors and parasites) cannot be ignored.

However, we know nothing about the mecha-
nisms that cause such intraspecific variation in this
thistle. The aim of the present study was to eluci-
date the factors causing intraspecific variation of 
C. kamtschaticum as a host plant of E. pustulosa. We
paid special attention to: (i) how genetic and envi-
ronmental factors affect host-plant leaf quality for
the preference and/or performance of E. pustulosa;
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and (ii) whether/how the factors alter the prefer-
ence–performance correspondence in the beetle.
We focused particularly on the quality of thistle
leaves, because leaf quality might be considered 
to be the principle factor shaping insect–plant
associations (Rosenthal & Janzen 1979).

METHODS

Insect material

We used post-hibernating adult females (and their
offspring) of the so-called Sapporo form of E. pus-
tulosa, which is known to occur on C. kamtschaticum
and on blue cohosh Caulophyllum robustum Maxim.
(Berberidaceae), when this plant grows together
with thistle (Kurosawa 1953; Katakura 1974,
1981). However, no population of E. pustulosa
exclusively dependent on blue cohosh has been
reported (Katakura 1981). This suggests that C.
kamtschaticum is the main host plant of E. pustulosa.

We collected post-hibernating females from
thistle plants in Sankakuyama, a western suburb of
Sapporo, Hokkaido in northern Japan. All females
were sexually mature and had probably copulated
and stored sperm before their collection (Katakura
1982).

The beetles were fed the alternative food 
plants, Scopolia japonica Maxim. (Solanaceae) and/or
Solanum japonense Nakai (Solanaceae) (cf. Katakura
1981), for more than 1 week before the experi-
ments started in order to diminish the possible
influence of feeding experience before collection.
When the same beetles were used repeatedly in
different feeding tests, they were fed S. japonica
and/or S. japonense for more than 24 h prior to 
each experiment to minimize the influence of 
preceding tests.

Manipulations of thistle plants

We used two thistle clones (previously coded 
as T1U1 and T4H2), originally growing on the
campus of Hokkaido University and at Hoshioki,
respectively (both locations are in Sapporo and are
approximately 12 km apart). The two clones were
fully mature, being composed of more than 10
shoots each. They differed distinctly in leaf quali-
ties that affect adult food preference and larval 



performance in E. pustulosa. Adult females preferred
T1U1 to T4H2, and larval performance was better
on T1U1 than on T4H2, when leaves from clones in
situ were examined (Fujiyama & Katakura 1997).

Because the thistle clones were obtained in
somewhat remote locations, both genetic and envi-
ronmental factors might be postulated as giving
rise to the qualitative differences between them. 
To examine whether and how genetic and envi-
ronmental factors of C. kamtschaticum affect the
preference and performance of E. pustulosa, we con-
ducted the following two manipulations of the
thistle plants.

Transplantation of the two thistle clones
In the autumn of 1993, we dug up approximately
half of the two thistle clones from their original
locations, and transplanted the material side by side
(about 1 m apart) in an experimental garden on the
campus of Hokkaido University. Thus, there were
two different thistle clones growing under the same
environmental conditions. Hereafter, the two trans-
planted clones are referred to as T1U1(TP) and
T4H2(TP). All clones in situ and in the experimen-
tal garden grew normally from the spring of 1994.
Clones in the experimental garden grew mostly
intact with the occasional removal of herbivores.

Leaves of the transplanted clones were examined
in experiments in 1994 and 1996 for choice tests,
and in 1996 for rearing of larvae.

Manipulation of sunlight intensities
Light conditions are one of two main extrinsic
factors that may affect plant quality (Waterman 
& Mole 1989; the other factor is nutritional 
condition of the soil). Therefore, in the present
study, we investigated the effects of sunlight inten-
sity on thistle leaves, as a representative environ-
mental variable. Under natural conditions, C.
kamtschaticum grows in a wide range of light con-
ditions from sunny grasslands to within forests
(Kadota 1995; N. Fujiyama pers. obs.).

Sunlight intensity was manipulated in 1995
using the thistle clone T1U1. We separated shoots
of the clone into three groups in early summer and
subjected them to three different light conditions.
In the first group (T-D1), all shoots were shaded
with one layer of black cheesecloth net (creating
conditions of 30.8% sunlight relative to direct sun-
light; measured by a portable illuminomater (IM-

3; TOPCON, Tokyo, Japan)). In the second group
(T-D2), all shoots were shaded with two layers of
the same net (creating conditions of 13.1% sunlight
relative to direct sunlight). In the third group (T-
D0), no shading was provided (100.0% direct sun-
light). These conditions were maintained until all
experiments were finished. Through this manipu-
lation, we prepared thistle plants that were identi-
cal genetically, but differed environmentally.

Leaves of these shoots were offered to adult
females in the choice tests not less than 14 days
after the start of the manipulation, and were begun
to be used for the rearing of larvae 6–8 days after
the start of the manipulation.

Experiments

We examined the degree of female beetle food pref-
erence by choice tests, and larval performance by
rearing on different food conditions.

It is virtually impossible to distinguish between
choice for oviposition and choice for adult food in
E. pustulosa. Unlike insects such as lepidopterans,
for which larval foods are distinctly different from
those of adults, both adults and larvae of epilach-
nine beetles feed on the same part of the same plant
species. Hence, it is very difficult to quantify
oviposition preference itself in laboratory condi-
tions. For this reason, in the present study, we
treated the food choice of ovipositing females as
equivalent to the choice of food plant for larvae.

All experiments were carried out under a 
controlled regime of 16 L : 8 D at 20°C.

Choice tests
Two pieces of leaves (about 20 cm2, each from 
different clones or differently manipulated shoots)
were placed in a transparent polystyrene cage 
(8.0 cm ¥ 15.5 cm ¥ 3.0 cm), the bottom of which
was covered with moist filter paper. We released a
female beetle into the cage and allowed it to feed
the leaf pieces for 24 h. The leaf areas consumed
were measured with the aid of image processing
software (NIH Image ver. 1.55; National Institute
of Health, Bethesda, USA), after being photo-
copied and scanned into a computer. Using differ-
ent females, nine to 15 replicates were carried out
simultaneously in each choice test.

Lack of independence was considered between
consumed areas on the two leaf pieces offered for
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each beetle. Therefore, before statistical analyses,
we calculated the subtracted remainder of the con-
sumed area on one leaf piece from the other. Then
the remainders were examined through a type of
manova (Manly 1993) to detect preferences.

Larval performance
We gathered egg masses laid by post-hibernating
females while they were kept for the above 
mentioned choice tests.

For rearing on leaves of the transplanted thistle
clones, larvae from a single egg mass were divided
into two groups, in order to equalize the genetic
background of tested insects between food condi-
tions. Larvae were reared individually on leaves of
either of the two thistle clones in a transparent
polystyrene case (5.5 cm ¥ 6.0 cm ¥ 2.0 cm), 
the bottom of which was covered with moist 
filter paper. A total of 35 larvae each, derived from
seven females, were reared under the two food 
conditions.

For rearing on leaves of the shoots exposed to
different sunlight intensities, three sets of newly
hatched larvae, each containing five individuals
from a single egg mass, were prepared and were
reared under the three food conditions. Rearing
was carried out in transparent polystyrene cages
(8.0 cm ¥ 15.5 cm ¥ 3.0 cm), the bottoms of which
were covered with moist filter paper. A total of 50
larvae from 10 egg masses derived from 10 females
were reared under each food condition.

Throughout the experiments, we provided a suf-
ficient amount of food plant leaves picked every
day or every other day. Larvae were reared until
emergence. We recorded the eclosion rate (i.e. the
percentage of individuals reaching adulthood), the
developmental duration (the number of days from
hatching to adult eclosion) and the pronotum
width of newly emerged adults (a body size index).
The eclosion rates were calculated for each 
replicate (derivation for mother female) in each
food condition.

Data were analyzed by one-way ANOVA after
adequate transformations of variables. Other non-
parametric methods (Mann–Whitney U-tests and
Kruskal–Wallis tests) were also employed when
data were not appropriate for ANOVA. For rearing
on leaves exposed to different sunlight intensities,
additional pair-wise comparisons were planned to
be conducted using the Scheffé method, or non-
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parametric tests for multiple comparisons using
the Mann–Whitney-Wilcoxon U-statistic (Sokal &
Rohlf 1995) were to be used when significant 
difference was detected among the three food 
conditions.

RESULTS

Transplanted clones

Distinct preferences for T1U1 with clones growing
in situ (Fig. 1) also occurred after the transplanta-
tions (Fig. 2).

The results of the larvae rearing are summarized
in Table 1, together with the previous results
obtained in 1992 with clones growing in situ for
comparisons (cf. Fujiyama & Katakura 1997). As
reported before, larvae performed better on T1U1

than on T4H2 in the developmental traits, except
female pronotum width, when they were reared 
on leaves from the two clones growing in situ
(eclosion rate: U = 83.0, P = 0.008; developmen-
tal duration: d.f. = 1, F = 143.873, P < 0.001;
pronotum width of female: d.f. = 1, F = 2.043, P
= 0.165; pronotum width of male: d.f. = 1, F =
8.836, P = 0.005). However, differences in larval
performance between the clones were reduced after
transplantation into the experimental garden; sig-
nificant differences were not detected, except for
developmental duration (eclosion rate: U = 16.5, 
P = 0.284; developmental duration: d.f. = 1, F =
34.481, P < 0.001; pronotum width of female: d.f.
= 1, F = 0.001, P = 0.981; pronotum width of
male: d.f. = 1, F = 3.161, P = 0.088).

Shoots exposed to different sunlight
intensities

Results of choice tests are shown in Fig. 3. No sig-
nificant preference of E. pustulosa female adults was
observed in the three combinations examined (T-
D0 vs T-D1, T-D1 vs T-D2, and T-D0 vs T-D2; Fig.
3). For the combination of leaves exposed to the
most different sunlight intensities (i.e. T-D0 vs
T-D2), females tended to choose leaves exposed to
higher sunlight intensities (P < 0.1; Fig. 3c).

The results of larvae rearing are given in Table
2. There was a significant difference in eclosion
rates among the three food conditions (d.f. = 2, 



H = 7.680, P = 0.021). Pair-wise comparisons
revealed that the difference of the rates between 
T-D0 and T-D2 was significant (T-D0 vs T-D1, 
U = 78.5, P > 0.05; T-D1 vs T-D2, U = 53.5, 

P > 0.05; T-D0 vs T-D2, U = 81.0, P < 0.05).
Larval eclosion rates increased with the increase of
sunlight intensity for leaves. In the other develop-
mental traits examined, no significant differences
were observed (developmental duration: d.f. = 2, 
F = 1.326, P = 0.270; pronotum width of female:
d.f. = 2, F = 0.008, P = 0.992; pronotum width of
male: d.f. = 2, F = 0.166, P = 0.848).

DISCUSSION

Factors causing interclonal differences in
the thistle

Previously, we reported that the C. kamtschaticum
clone T1U1 was superior to T4H2 with respect to
both female preference and larval performance 
of E. pustulosa (Fujiyama & Katakura 1997).
However, it was not clear whether these differences
were caused by genetic or environmental factors,
since the two clones were obtained in somewhat
remote locations. The two clones were probably
exposed to different microenvironments in situ,
and were suffering from different levels of feeding
by different sets of herbivores.

In this study, transplantation of the two clones
to the common experimental garden diminished
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Fig. 1. Choices by post-hibernating adult females of Epilachna pustulosa between two thistle clones growing in the
original locations (T1U1 and T4H2) examined in different seasons and in different years. (a)–(c) Re-analyzes of data
in Fujiyama and Katakura (1997); (d) and (e), unpublished data. Each circle represents actual consumed area (in cm2)
by each beetle. Analyzed by manova (Manly 1993). Significant difference (P £ 0.05) indicates the existence of pref-
erence for leaves with larger consumed area.

Fig. 2. Choices by post-hibernating adult females of
E. pustulosa between two thistle clones transplanted into
the experimental garden (T1U1(TP) and T4H2(TP),
examined in different years. For further explanation, see
the legend to Fig. 1.



possible influences of habitat-associated physical
factors (Khan et al. 1986; Larsson et al. 1986;
Strauss 1990; Shirai 1994) and feeding damage
(Parker 1984; Raupp & Denno 1984; Taylor &
Forno 1987; Forno & Bourne 1988; Schultz 1988;
Reznik 1991). Differences in host-plant age can
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also affect the quality of leaves (cf. Craig et al.
1986; Price et al. 1987, 1990; Caouette & Price
1989; Roininen et al. 1993; Stein & Price 1995).
However, since both clones used were fully mature,
it is also unlikely that the differences between the
clones was caused by an age difference. Hence, if

Table 1 Developmental traits [mean ± SE (n)] of Epilachna pustulosa reared on two Cirsium kamtschaticum clones
growing in their original locations (T1U1 and T4H2) and clones transplanted into the experimental garden [T1U1(TP)
and T4H2(TP)]

Developmental Pronotum widths (mm)
Offered clone Eclosion rate duration (days) Female Male

T1U1 92.0 ± 4.42 (10)a 34.85 ± 0.342 (46)a 3.50 ± 0.031 (15)a 3.36 ± 0.023 (31)a

T4H2 64.0 ± 8.84 (10)b 42.69 ± 0.642 (32)b 3.42 ± 0.049 (12)a 3.25 ± 0.032 (20)b

T1U1(TP) 82.9 ± 6.80 (7)a 31.90 ± 0.291 (29)a 3.33 ± 0.075 (12)a 3.25 ± 0.041 (17)a

T4H2(TP) 71.4 ± 7.38 (7)a 34.76 ± 0.413 (25)b 3.32 ± 0.029 (16)a 3.14 ± 0.040 (9)a

The results for the two thistle clones in situ are re-analyses of data in Fujiyama & Katakura (1997). Figures with the same 
superscript letters are not significantly different (P > 0.05) (eclosion rates, Mann–Whitney U-tests; developmental duration and
pronotum widths, one-way anova after log-transformation).

Fig. 3. Choices by post-
hibernating adult females of
E. pustulosa between thistle
leaves exposed to different
sunlight intensities. (a) T-D0
(not shaded) versus T-D1
(shaded with one layer of black
cheesecloth net). (b) T-D1
versus T-D2 (shaded with two
layers). (c) T-D0 versus T-D2.
For further explanation, see
the legend to Fig. 1.

Table 2 Developmental traits [mean ± SE (n)] of Epilachna pustulosa reared on three food conditions of Cirsium
kamtschaticum leaves that differed in sunlight intensity

Developmental Pronotum widths (mm)
Food condition Eclosion rate* duration (days) Female Male

T-D0 86.0 ± 7.92 (10)a 32.54 ± 0.342 (43)a 3.45 ± 0.036 (21)a 3.33 ± 0.034 (22)a

T-D1 62.0 ± 10.93 (10)ab 32.00 ± 0.232 (31)a 3.44 ± 0.034 (14)a 3.33 ± 0.026 (17)a

T-D2 52.0 ± 12.37 (10)b 33.00 ± 0.590 (26)a 3.44 ± 0.046 (19)a 3.30 ± 0.056 (7)a

*0.01 < P < 0.05 by Kruskal–Wallis test. Eclosion rates were analyzed by the Mann–Whitney-Wilcoxon U-statistic 
after Kruskal–Wallis tests. Developmental duration and pronotum widths were analyzed by one-way A N O VA after log-
transformation. Figures with the same superscript letters are not significantly different (P > 0.05).



there are differences between the clones after trans-
plantation, they can be considered to be genetic
differences (cf. Moran 1981; Service 1984; Leather
1985; Karban 1987, 1989; Maddox & Root 1987;
McCrea & Abrahamson 1987; Fritz & Price 
1988; Fritz & Nobel 1989; Fritz 1990; Strauss
1990; Horner & Abrahamson 1992; Weis &
Campbell 1992; Shen & Bach 1997).

The results obtained in the present study 
indicate that the characteristics of the two C.
kamtschaticum clones with respect to beetle prefer-
ence were well-retained after transplantation (Figs
1,2). For larval performance, on the other hand, the
differences seemed to be reduced (Table 1). These
results suggest that thistle leaf characteristics for
beetle preference are determined more strictly by
genetic factors, while qualities for larval perfor-
mance are less so.

Results obtained by the experiments using
shoots exposed to different sunlight intensities are
consistent with the results of the transplantation
experiments. Adult females tended to prefer leaves
of thistle shoots exposed to higher sunlight inten-
sities (Fig. 3c), but the difference was slight and
not significant. In contrast, an obvious result was
obtained for larval performance; larval eclosion
rates increased significantly with the increase in
sunlight intensity for the leaves (Table 2). These
results indicate that leaf qualities for larval perfor-
mance probably change more drastically than the
characteristics with respect to beetle preference,
according to the difference in environmental 
conditions of the plants.

Thus, the results obtained in the present study
suggest strongly that (i) both genetic and envi-
ronmental factors lead to individual variation
among thistle clones as host plants of E. pustulosa;
and (ii) these two factors could affect thistle leaf
qualities for adult preference and for larval perfor-
mance differently.

Variable correspondence of adult
preference and larval performance

Overall, the quality of thistle leaves for larval 
performance of E. pustulosa seemed to be affected
largely by environmental factors, while leaf char-
acteristics with respect to beetle preference may
have been determined strictly by genetic factors
(cf. Horner & Abrahamson 1992).

The nature of intraspecific variation in 
C. kamtschaticum may be further complicated
through genotype ¥ environment interactions; 
it is possible that alternations of phenotypic 
leaf qualities due to environmental changes are 
different for each thistle genotype (cf. Strauss
1990; Horner & Abrahamson 1992). Further
experiments taking genotype ¥ environment 
interactions into account are necessary for a bet-
ter understanding of associations between C.
kamtschaticum and E. pustulosa.

The present study showed that the correspon-
dence of adult preference and larval performance in
E. pustulosa can vary with different experimental
conditions. Thus, good correspondence (Fujiyama
& Katakura 1997) cannot always be detected if
experimental designs are different. Furthermore,
good correspondence might deteriorate in a habitat
in which environmental conditions are unstable, or
in a habitat that has suffered recent disturbance or
environmental alternations, because in these habi-
tats, leaf qualities for larval performance may be
variable. Under such circumstances, the behavior
of E. pustulosa females may appear to be maladap-
tive, as the beetles may prefer plants not appro-
priate for larval growth, or may not choose plants
appropriate for larval growth.

There have been many studies that have
attempted to detect good preference–performance
correspondence in phytophagous insects (reviewed
by Thompson 1988; Courtney & Kibota 1990;
Thompson & Pellmyr 1991). However, good 
correspondence has been confirmed less frequently
than expected (Leather 1994; Mayhew 1997).
Some authors have reported relatively poor 
correspondences when they used transplanted 
host plants, even though good correspondence was
expected from foregoing field studies (Horner &
Abrahamson 1992; Craig et al. 1999, 2000; see
also Anderson et al. 1989). The relative scarcity 
of empirical evidence for good preference–
performance correspondence might be attribut-
able, at least in part, to different responses of 
host-plant qualities between those concerning
adult preference and those for larval performance,
as demonstrated in this study. As Mayhew 
(1998) emphasized, if good preference–
performance correspondence really exists, it may
be masked by the experimental methodology
employed.
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