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Abstract

Coccinellid communities across North America have experienced significant changes in recent decades, with declines in
several native species reported. One potential mechanism for these declines is interference competition via intraguild
predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic
coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance
of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north
central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount
of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of
local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that
sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg
masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella
septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native
species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the
predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator
numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid
egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural
habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields
surrounded by other croplands. This study shows that intraguild predation by both native and exotic predators may
contribute to native coccinellid decline, and that landscape structure interacts with local predator communities to shape the
specific outcomes of predator-predator interactions.
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Introduction

In many areas of the U.S., human-mediated disturbances have

altered the landscape, resulting in a matrix of agricultural and

urban land uses containing fragmented patches of semi-natural

habitats. These landscapes support altered food webs which

contain both accidently and intentionally introduced species at

multiple trophic levels. The introduction of non-native species is

considered a major threat facing native biodiversity [1]. Among

introduced and native generalist predators, both direct and

indirect competitive interactions can influence predator-prey

dynamics and the stability of native predator populations [2,3,4].

Therefore, evaluating competitive interactions occurring between

native and introduced species is critical to understanding potential

threats to the stability of native predator biodiversity and

biocontrol services.

An important example is the soybean-soybean aphid system.

The soybean aphid Aphis glycines Matsumura, a native of Asia, was

first detected in the U.S in July of 2000. Both the primary and

secondary host plants of the aphid; common buckthorn, Rhamnus

cathartica L. (Rhamnaceae) and the cultivated soybean, Glycine max

L. (Fabaceae); as well as its complex of lady beetle predators,

Harmomia axyridis Pallas, Coccinella septumpuncata L., Hippodamia

variegata (Goeze), and Propylea quatuordecimpunctata (L.) (Coccinelli-

dae) are all introduced species. Although the addition of these

exotic coccinellids into U.S. agricultural food webs has contributed

to the biocontrol of A. glycines and other aphid pests, increasing

evidence suggests that their presence has also resulted in the

displacement of native coccinellid competitors. In recent decades

declines in several native coccinellids have been documented in

the U.S., including Coccinella novemnotata Herbst, Coccinella transver-

soguttata richardsoni Brown, Adalia bipunctata (L.), Brachiacantha ursina

(F.), Cycloneda munda (Say), Chilocorus stigma (Say), and Hippodamia

convergens Guérin-Méneville [5,6,7,8,9,10,11]. The decline of these

species has been dramatic, for example C. novemnotata was once a

common agricultural species and is now quite rare [10].

Although exotic coccinellids have been implicated as the cause

of native decline, potential competitive mechanism(s) are not fully

understood. One hypothesis is that native coccinellid decline is due

to enhanced interference competition via intraguild egg and larval

predation (IGP). Exotic coccinellids have been observed to act as

intraguild predators of native coccinellids in laboratory and field

PLoS ONE | www.plosone.org 1 September 2011 | Volume 6 | Issue 9 | e23576



cage studies [12,13,14,15,16,17], however, the extent to which

IGP via egg predation occurs within agroecosystems has not been

previously studied.

In addition, recent studies have illustrated that agricultural

landscape structure may influence coccinellid communities and

therefore the intensity of potential competitive interactions such as

IGP. Gardiner et al. [18] measured native and exotic coccinellid

diversity and abundance in soybean fields across Iowa, Michigan,

Minnesota, and Wisconsin in 2005–06 and found that the

proportion of the coccinellid community composed of native

species varied significantly across this region, from a low of 10%

natives in Michigan to 44.8% natives in Iowa. They found that the

abundance of native and exotic lady beetles was tied to the

composition of the landscape surrounding soybean fields. The

presence of semi-natural habitat within the agricultural landscape

was important for both native and exotic species; however, the

type of habitat present influenced the community structure.

Landscapes with an abundance of forested habitat had the greatest

proportion of the H. axyridis while landscapes with an abundance

of grasslands supported higher populations of native species.

This study investigated the extent of egg predation experienced

by a native coccinellid, Coleomegilla maculata (De Geer) in soybean

fields. The goal of this research was to determine if egg predation

could be a significant factor influencing changes in the native

coccinellid community. Our specific objectives were to: 1)

Determine if native coccinellid egg predation occurred within

soybean fields, 2) Examine whether egg predation was correlated

with the abundance of exotic coccinellids present, and 3)

Determine if egg predation was influenced by local, edge, or

large-scale landscape composition. Our initial hypothesis was that

landscapes with an abundance of forested habitat (i.e. Michigan),

known to support higher exotic coccinellid populations, would

support greater egg predation of a native coccinellid than

landscapes which limit the success of exotic Coccinellidae (i.e.

Iowa).

Methods

Selection of sentinel species
We selected Colelomegilla maculata as a model to measure the

amount of egg predation experienced by native coccinellids in the

agricultural landscape. This species is a common native coccinellid

throughout the Eastern U.S. and is found in soybean in both Iowa

and Michigan [18,19,20,21]. Females were easily collected and

readily produced egg masses in culture, and thus, could be used as

a sentinel.

Egg mass collection
Beginning in May 2007, C. maculata adults were collected from

old field grasslands and alfalfa fields near the Iowa State University

campus (Ames, IA) using sweep nets. Females were placed

individually into Petri dishes with strips of paper to serve as an

oviposition substrate. Beetles were provided daily with water,

honey, and eggs of the corn earworm, Helicoverpa zea (Boddie).

Dishes were checked daily for C. maculata eggs and any found were

frozen (280uC). For transport from IA to MI, egg masses were

packed in dry ice and transported by van from Iowa State

University to Michigan State University where they were stored in

a 280uC freezer until they were deployed in the field. We

determined that 15 eggs per oviposition event were the average

number of eggs deposited by C. maculata under these conditions

and therefore we used this size egg mass in our field experiment.

To prepare sentinel egg masses, individual eggs were either added

or removed from existing masses using a paint brush, to reach the

desired number of eggs per strip (n = 15). Added eggs were

attached to the paper strip using water soluble glue (Elmer’s

Products, Columbus, OH). The standardized egg masses were cut

out and glued onto filter paper disks (12 mm diameter).

Measuring predation of frozen egg masses
To determine if freezing C. maculata eggs affected predation, we

compared consumption of previously frozen and live C. maculata

eggs by four predators commonly found in soybean fields: C.

septempunctata, H. axyridis, H. parenthesis and Nabis sp. Individual

predators were released into a Petri dish arena containing three

thawed and three fresh C. maculata eggs, which were randomly

assigned to 263 grid. Predation of the fresh and thawed eggs was

measured at 8, 18, and 24 h. Ten replicates were completed for

each predator species. A mixed effects repeated measures analysis

of variance (ANOVA) model was used to determine if predators

were as likely to consume fresh versus frozen eggs. Fixed factors

included in the model were egg treatment (fresh or frozen), time (8,

18, or 24 hr) and a treatment by time interaction.

Field sites
During July of 2007, we measured the intensity of predation on

sentinel egg masses of C. maculata in soybean fields in Michigan

(n = 8) and Iowa (n = 6). A minimum distance of 10 km separated

each field site. Field size averaged 15.1 ha (range: 3.0–60.4 ha).

Within each state, soybean fields were located within landscapes

which ranged from agriculturally-dominated to diverse landscapes

containing both agricultural and semi-natural habitats. Within

each soybean field, all sampling took place within four 0.2 ha plots

established at least 30 m from any edge. Soybean fields were not

treated with insecticide during the study period.

48 h egg predation field experiment
To distinguish egg predation from other forms of loss

(desiccation, physical dislodgement etc.), predator accessible and

exclusion treatments were compared. The exclusion treatment

consisted of one egg mass enclosed in a 22 cm cage to prevent

predators from accessing the eggs. The predator accessible egg

treatment consisted of an un-caged egg mass. A total of 8 egg masses

were present per field site, (one of each treatment within each of the

four plots). To begin the experiment, two filter paper disks

containing egg masses were glued onto the top side of a soybean

trifoliate leaf approximately 15 cm from ground level on adjacent

plants in the center of each plot. Both treatments remained in the

field for 48 h after which they were collected and examined to

determine the number of undamaged eggs remaining. After 48 h of

exposure in the field 40% of eggs in the caged treatment were

partially collapsed, mimicking damage that could be caused by

piercing sucking predators. To avoid attributing damage which may

have been caused by freezing and thawing to predation, we only

considered eggs to be damaged if there was clear evidence of attack

by a chewing predator. Thus our study does not account for losses

due to piercing-sucking predators and as such, is likely to be a

conservative estimate of C. maculata egg predation.

Nocturnal egg predation experiment
To account for the proportion of the egg predation due to

nocturnally active predators, we conducted a predation experi-

ment at night in eight sites (four per state). The two egg mass

treatments (predator accessible and exclusion) were placed within

the center of each plot on adjacent plants at dusk and removed at

dawn (9 h exposure from 2000–2200 h to 0500–0700 h) and the

number of undamaged eggs recorded.

Predation of Native Coccinellid Eggs
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Soybean aphid and predator survey
During the 48 h experiment, we measured the activity of

potential egg predators by two methods; yellow sticky traps and

sweep netting, previously shown effective in describing the natural

enemy community in soybeans [22]. We placed one unbaited yellow

sticky card (PHEROCON AM, Great Lakes IPM, Vestaburg, MI)

in the center of each plot. A metal ‘‘T’’ fence post was erected and a

22.9627.9 cm sticky card was suspended just above the plant

canopy. Sticky traps remained in the field for 48 h. All predators

were counted and identified to species. We also measured the

abundance of predators by collecting a 20-sweep sample from two

rows of soybean plants in each plot. As the abundance of extraguild

prey may affect the intensity of egg predation, we also measured

soybean aphid populations within each field site using destructive

plant counts. In each plot, five randomly selected plants were

removed from the ground and the number of apterous and alate A.

glycines were counted on each plant.

Landscape analysis
Field geospatial data were collected using a handheld GPS

receiver using Wide Area Augmentation System (WAAS)

correction. The spatial coordinate (WSG 1984) for the center of

each field was used to obtain ortho-rectified digital aerial imagery

for the site. We digitized the habitats surrounding each study site

to a radius of 2 km using ARC GIS 9.0 and conducted ground

verification of each landscape from July–August 2007. Each

landscape polygon within 2 km of the center of the study sites was

given a value corresponding to one of seven landscape categories:

corn, soybean, other crops, forest, grassland, wetland, or urban.

Some locations included polygons that were not visible from a

roadway and permission to access private lands could not be

obtained. These polygons were given a value of zero and were

excluded from further analysis. However, the area of each site that

could not be identified was very low (,1%). The smallest polygons

identified included field plots on university research farms and

small patches of abandoned crop field (,5 m2) the largest were

contiguous forests, grasslands and crop fields (#1.3 km2).

Using ARC GIS 9.0 we measured characteristics of the

landscape surrounding each field site. The composition of the

habitat edge surrounding each soybean field site was quantified by

determining the proportion of the perimeter bordered by cropland

edge, semi-natural edge or urban edge. Semi-natural edge

included all grasslands and forested habitats. Urban edges

included residential land and roadways. We determined landscape

heterogeneity within a 2 km radius from the center of each field

using Simpson’s Index (D) [23]. Simpson’s Index is typically used

to examine the variance of species abundance distributions; here

we applied it to examine variance in the proportion of area

covered by each of seven land cover categories. The equation for

Simpson’s Index (D) is: D = 1/S(pi)
2 where pi = proportion of

habitat in the ith land-cover category (D increases as landscape

heterogeneity increases).

Statistical analysis
Both field experiments (48 h and nocturnal) tested two null

hypotheses. The first was that within a field, predators are not a

significant source of egg injury (no difference in number of damage

eggs in exclusion versus predator accessible cages). In our model this

factor is designated as Treatment. Our second null hypothesis was

that sentinel egg predation does not vary by State. As described

earlier, the ratio of exotic to native coccinellids in the soybean fields

of MI and IA vary significantly. In this way, State is a proxy within

our statistical model for landscapes that vary in their coccinellid

communities. To avoid confounding land-use within the treatment

factor, we selected locations in each state so that the range of

agricultural land use was similar. To test both null hypotheses, a

split-plot mixed effects analysis of variance model (ANOVA) was

used. This model included Treatment (Exclusion and Predator

Accessible egg masses) and State (Michigan and Iowa) as fixed

effects and a State by Treatment interaction. Random effects were

Site (multiple field locations within each state) nested within State

and Plot nested within Site and State.

A log likelihood chi-square test assuming a multinomial

distribution was used to examine the variation in the community

of potential egg predators in Michigan and Iowa soybean fields [24].

This test determines if the species composition of the predator

community within each state was significantly different. The null

hypothesis for this test was that the proportional distribution of

predator species within Michigan and Iowa did not differ. This test

was completed using compiled species data from sticky cards and

sweep net samples. Both the ANOVA models and log likelihood chi-

square test were completed using SAS v. 9.1 [25].

To evaluate the relationship between native coccinellid egg

predation and landscape variables, we performed a principal

components analysis (PCA) to reduce the dimensions of the data.

Six landscape variables (Forest, Grassland, Corn, Soybean, Other

Crops, and Urban) and three edge variables (Semi-natural Edge,

Cropland Edge, and Urban Edge) were included in the PCA

analysis. To meet the assumption of a multivariate normal

distribution of the variables, the landscape variable Wetland was

dropped prior to analysis as it made up a very small proportion of

the 14 landscapes (average of 1.4%, range of 0–8.2%). Principal

component axes were extracted using correlations among variables

and the resulting factors were not rotated [26]. We restricted our

analysis to the first three eigenvectors which explained 73.8% of

the variability in the data.

To assess the influence of within-field, and landscape variables

on the abundance of egg predators and the intensity of native

coccinellid egg predation, multiple models were compared using

Akaike’s Information Criterion, adjusted for a small sample size

(AICc) [27]. The abundance of potential egg predators was

estimated by summing the mean number of predators collected

per sweep sample and yellow sticky card trap for each site. This

combined mean was log (x+1) transformed prior to analysis to

meet the assumptions of normality and homogeneity of variances

(SAS Institute, 1999). The mean number of C. maculata eggs

remaining after 48 h was also log (x+1) transformed prior to

analysis. The relationship between the response variable Eggs

Remaining (number of eggs remaining in the predator accessible

treatment after 48 h of exposure) and nine models were examined

(Table 1). Relationships between the response variables Potential

Egg Predators and Potential Exotic Egg Predators and seven

models were compared (Table 1). We selected the model with the

minimum AICc value as having the best support for the data, and

considered any model with an AICc difference of less than two

from the best fit model to be a competing model [27,28]. For each

model, we present the maximum log-likelihood estimate, the

Akaike weights, which estimate the relative likelihood of a given

model against all other models, and AICc differences (Di). We

calculated adjusted r2 to evaluate how well the models explained

the variation in the data. The AICc analysis and adjusted r2 were

determined using R version 2.1.1 [29].

Results

Egg predation
In the laboratory, all four predators tested (H. axyridis, C.

septempunctata, H. parenthesis, and Nabis sp.) consumed an equivalent

Predation of Native Coccinellid Eggs
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number of frozen and live eggs (the variable Treatment was not

significant at P,0.05). For H. parenthesis, C. septempunctata, and Nabis

sp. egg predation increased over time, resulting in a significant

time effect.

In the field, egg masses of C. maculata were subject to

significant predation in soybean fields across Michigan and Iowa

after 48 h of field exposure (F1,54 = 45.7, P,0.001) (Figure 1). In

the predator accessible treatment, 60.7% of egg masses were

attacked by predators and 43.0% of available C. maculata eggs

were consumed after 48 h of exposure. Across all egg masses in

the predator accessible treatment, 8.660.9 eggs remained of the

original 15 per mass after 48 h. There was a marginally

significant difference in the amount of predation incurred

between the states (State*Treatment interaction: F1,54 = 3.2,

P = 0.0804), with C. maculata eggs in Iowa soybean experiencing

slightly higher predation than in Michigan fields (6.561.5 and

10.161.1 eggs remaining in predator accessible egg masses in

Iowa and Michigan respectively).

Nocturnal egg predation experiment
In the nocturnal predation test there was no significant

difference between the number of eggs remaining in predator

exclusion and predator accessible treatments (F1,30 = 2.0,

P = 0.1725) (Figure 1). Across the states, an average of 14.160.5

eggs remained of the original 15 per egg mass in the predator

accessible treatment.

Aphid and predator populations
Aphid populations in soybean fields during the egg experiment

were low across the 14 sites, varying from 0 (Monroe and

Britton, MI) to 21.464.5 per plant (Ames, IA). In both states low

numbers of chewing predators were detected, averaging 0.360.1

and 0.760.1 per 20 sweeps in Iowa and Michigan respectively

(Table 2). Chewing predators on yellow sticky cards averaged 0

per card in Iowa and 1.660.2 in Michigan. Six species of

potential egg predators were found: H. axyridis, C. septempunctata,

P. quatuordecimpunctata, C. maculata, H. parenthesis and the soft-

winged flower beetle Collops nigriceps (Say) (Melyridae) (Table 2).

The species composition of these communities in Michigan and

Iowa soybean fields were significantly different (X2
5 = 28.3,

P,0.0001). In Michigan, the community was dominated by the

coccinellids H. axyridis and C. septempunctata. In Iowa, C. nigriceps

comprised 50% of the predator community followed by C.

maculata, H. parenthesis and H. axyridis which each accounted for

16.7%. As C. nigriceps was not included in preliminary testing, we

subsequently measured its potential as a predator of C. maculata.

Four specimens were placed into individual Petri dishes each

with a thawed C. maculata egg mass. Within 3 h, three of four C.

nigriceps consumed all 15 eggs; in the fourth replicate the beetle

did not consume any eggs after 24 h.

Edge and landscape composition
The composition of the habitat edge surrounding the 14 study

sites ranged from 0 to 81.4% and 0 to 37.8% semi-natural habitats

in Iowa and Michigan respectively. Cropland borders ranged from

0 to 70.4% (Iowa) and 28.6 to 76.6% (Michigan) whereas urban

Table 1. Models compared using Akaike’s Information Criterion, adjusted for a small sample size (AICc) for the response variable
Eggs Remaining (number of eggs remaining in the predator accessible treatment after 48 h of exposure).

Model Explanation of Variable

Area Area of soybean fields where experiments were conducted

Perimeter Perimeter of soybean fields where experiments were conducted

Prey Average abundance of soybean aphid present within each site

Potential Predators1 Average abundance of all potential egg predators collected in sweep samples+average
abundance of all potential egg predators collected on yellow sticky card traps

Potential Exotic Predators2 Average abundance of exotic potential egg predators collected in sweep samples+average abundance
of exotic potential egg predators collected on yellow sticky card traps

D Simpson’s Index of landscape heterogeneity, calculated at a radius of 2 km surrounding the study sites

PC1 Principal component 1 interpreted from Principal Components Analysis

PC2 Principal component 2 interpreted from Principal Components Analysis

PC3 Principal component 3 interpreted from Principal Components Analysis

For the analysis of Eggs Remaining the variables (1) Potential Predators and (2) Potential Exotic Predators were included as predictors. These were also examined as
response variables and a total of seven models were examined (Area, Perimeter, Prey, D, PC1, PC2, and PC3).
doi:10.1371/journal.pone.0023576.t001

Figure 1. Mean number of eggs remaining in the predator
exclusion cage and predator accessible treatments in Iowa and
Michigan soybean fields for the 48 h and nocturnal (9 h)
predation experiments.
doi:10.1371/journal.pone.0023576.g001
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habitats comprised 0 to 34.4% (Iowa) and 0 to 63.0% (Michigan)

of field site edges.

Within a 2 km landscape radius surrounding each of the 14

sites, landscape diversity values (Simpson’s D) ranged from 2.1 to

5.3. The percentage of the landscape composed of cropland

ranged from 18.1 to 94.9%. Landscapes with high and low

percentages of these cropland occurred in both Michigan (18.1 to

94.9%) and Iowa (23.2 to 87.8%). Grassland habitat comprised 7.2

to 64.9% of Iowa and 0 to 25.9% of Michigan landscapes.

Forested habitat comprised from 0.04 to 21.5% of Iowa and 1.2 to

21.5% of Michigan landscapes.

Interpretation of principal components
The first principal component (PC1) was a measure of

landscape composition. Positive loadings on PC1 were correlated

with the variables Corn and Soybean while negative values were

correlated with the variables Grassland and Forest (Figure 2).

Therefore sites with positive values of PC1 suggest a landscape

with an abundance of corn and soybean agriculture whereas sites

with negative values of PC1 indicate a landscape with a diversity of

semi-natural habitats. Both PC2 and PC3 were related to the

composition of the edge immediately surrounding soybean field

sites. For PC2, sites with positive loadings were correlated with the

variable Urban Edge and negative loadings were correlated with

the variable Cropland Edge. Edges of sites with low values of PC2

were composed primarily by cropland while the edge of sites with

high values of PC2 included roadways and residential habitat. For

PC3, sites with positive loadings were correlated with the variable

Semi-Natural Edge and negative loadings were correlated with the

variable Cropland Edge. Agricultural lands dominated the

habitats bordering field sites with low values of PC3 whereas

semi-natural habitats such as forests and grasslands dominated the

edges of field sites with high values of PC3 (Figure 2).

AICc analysis of native coccinellid egg predation and
predator abundance

The PC3 model predicting the abundance of eggs remaining

after 48 h had the lowest AICc value (Table 3). There was a

significant (P = 0.002) negative relationship between PC3 and the

number of eggs remaining in the open egg treatment after 48 h

(Figure 3). This indicates that the intensity of native coccinellid egg

predation in soybean fields was greater when fields were bordered

by semi-natural habitats rather than agricultural fields. None of

the other models examined qualified as a competing model (Di,2

of best fit model) (Table 3). For the response variable Potential Egg

Predators, the landscape diversity (D) model had the lowest AICc

value of all candidate models examined, no competing models

were found for this response variable (Table 3). Potential Exotic

Egg Predators was also best predicted by the landscape diversity

(D) model. For this response variable, the PC2 model was a

competing model (Table 3). There were significant positive

relationships between landscape diversity and the abundance of

potential egg predators (P = 0.012) and potential exotic egg

predators (P = 0.034). This illustrates that diverse landscapes,

which in this study contained both natural and agricultural land

supplied a larger predator community to soybean fields compared

with simple landscapes dominated by corn and soybean. There

was a marginally significant relationship (P = 0.076) between PC2

and exotic predator abundance. This indicates that a weak positive

relationship exists between the proportion of the soybean field

surrounded by urban land use and potential exotic egg predator

abundance.

Discussion

This study measured the intensity of native coccinellid egg

predation experienced by C. maculata within soybean fields, a

habitat utilized by both native and exotic coccinellid species

Table 2. Percent of the total predator community and mean abundance 6 SEM of predators found in Iowa and Michigan soybean
fields.

Sweep Neta

Percentage of Total Mean ± SEM

Predator Species Iowa Michigan Iowa Michigan

H. axyridis 16.7 33.3 0.0460.04 0.2260.07

C. septempunctata 0.0 57.1 0 0.3860.11

P. quatuordecimpunctata 0.0 4.8 0 0.0360.03

C. maculata 16.7 0.0 0.0460.04 0

H. parenthesis 16.7 4.8 0.0460.04 0.03

C. nigriceps 50.0 0.0 0.1360.09 0

Total 100 100 0.2560.12 0.6660.12

Yellow Sticky Card Trapb

Percentage of Total Mean ± SEM

Iowa Michigan Iowa Michigan

H. axyridis 0 27.0 0 0.3160.09

C. septempunctata 0 70.3 0 0.8160.20

H. parenthesis 0 2.7 0 0.0360.03

Total 0 100 0 1.1660.20

aSweep samples consisted of a 20-sweep sample of two rows of soybean plants.
bYellow sticky cards were placed just above the plant canopy and remained in the field for 48 h (coincident with egg predation experiment).
doi:10.1371/journal.pone.0023576.t002
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[18,30,31]. Our goals were to determine the percentage of C.

maculata eggs removed by predators, the timing of predation

(noctural or diurnal) and whether predator community composi-

tion or presence of extraguild prey influenced egg predation.

Furthermore, we determined how various landscape features (area

and perimeter of soybean fields, structure of edge habitats, large-

scale landscape heterogeneity, and landscape composition) influ-

enced egg removal by predators.

Egg predation of C. maculata
Eggs of C. maculata were readily consumed by predators within

soybean fields. To accurately identify predation pressure on a

specific prey, it is critical to account for activity of both diurnal and

nocturnal natural enemy species [32]. Although we did not detect

a significant difference in the number of eggs remaining in the

predator accessible and exclusion treatments in the nocturnal

study, the number of eggs missing from the open treatment was

consistent, on a per hour basis, to the 48 hr study. If egg predation

is assumed to occur at constant rate across the 48 h experiment,

predators removed 0.9% of available egg masses per hour. The

rate of egg removal during the nocturnal predation study is 0.7%

per hour. Therefore, the influence of nocturnally active predators

clearly should not be ignored. Pfannenstiel and Yeargan [32]

observed that C. maculata larvae, Phalangiidae, Clubiona abbotii

(Clubionidae), Elateridae, Carabidae, and Lygus lineolaris (Lygeidae)

were all nocturnally active predators of lepidoptern eggs in corn

and soybean fields. As we use the predator data collected from

sweep and yellow sticky card sampling methods to explain the

variation in egg predation, it should be noted that some predators

may have been missed by these methods which may be important

contributors to egg predation.

The influence of potential egg predators
A total of six species of predators known to consume coccinellid

eggs were collected via sweep net and yellow sticky trap sampling.

These included three exotic coccinellids (C. septempunctata, H.

axyridis, and P. quatuordecimpunctata), two native coccinellids (C.

maculata and H. parenthesis), and the melryid C. nigriceps. Prior to this

study, predation of coccinellid eggs by C. nigriceps had not been

reported in the literature. While the overall extent of egg predation

did not vary between Michigan and Iowa, the species collected

from study fields varied. Exotic species occupied a larger

percentage of the coccinellid community in Michigan versus

Iowa. In the exotic-dominated food webs of Michigan, predation

of native coccinellid eggs may be contributing to the maintenance

of exotic-dominated populations. In Iowa, native species made up

a greater proportion of the predators, and native coccinellid eggs

support both native and exotic species.

Interestingly, we found that neither the abundance of all

potential predators (six species) or the abundance of exotic

coccinellids alone (three species) were strong predictors of egg

predation. Therefore, our hypothesis that soybean fields with a

greater number of exotic coccinellids experience higher levels of

egg predation was not supported. This suggests that while exotic

lady beetle species may have contributed to overall predation of

this native species, they do not unilaterally drive the result. As we

did not attempt to observe predation events in the field, we do not

know the precise identity of the predators which attacked C.

maculata eggs. However, based on the guild of predators sampled

from our field sites we hypothesize that a complex of both native

and exotic predators contributed to predation of this species. Still,

future work is needed to quantify the role of IGP by specific

predators in shaping native coccinellid communities.

Influence of landscape composition on predators egg
predation

Large-scale landscape structure was an important predictor of

predator abundance but not a of egg removal. Instead, we found

that the structure of local edge habitats influenced the intensity of C.

maculata egg predation in soybean fields. Fewer C. maculata eggs

remained after 48 h of exposure to predation within soybean fields

bordered by semi-natural habitats than in soybean fields boarded by

cropland. The composition of semi-natural habitat edges was

diverse, including pasturelands (36.9%), forests (31.1%), forage

(23.5%), old field (5.9%) and restored prairie (2.5%). As we found no

relationship between the abundance of the egg predators sampled

and the amount of predation detected, it is likely that additional

species were supplied by these edge habitats which also fed upon C.

maculata. These may include other arthropods (spiders, opiliones,

ants, carabid beetles) and potentially birds or rodents not currently

known to feed on coccinellid eggs and thus, not accounted for by the

Figure 2. PCA ordination for principal components (PC) 1–3
landscape variables sampled at a radius of 2 km and edge
variables bordering soybean fields. Points indicate the principal
component loadings of each variable included in the PCA analysis. Sites
with positive loadings on PC1 were correlated with the variables Corn
and Soybean while negatives loadings on PC1 were correlated with the
variables Forest and Grassland. Sites with positive loadings on PC2 were
correlated with the variable Urban Edge while negative loadings on PC2
were correlated with the variables Cropland Edge. Sites with positive
loadings on PC3 were correlated with the variable Semi-Natural Edge
while negative loadings on PC3 were correlated with the variable
Cropland Edge.
doi:10.1371/journal.pone.0023576.g002
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sampling methods we employed. One possibility is that while the

predators we anticipated respond to landscape structure at larger

landscape scales (i.e. the response of coccinellids to landscape

diversity and overall composition) that these lesser known predators

are responding at finer grain scales (i.e. to specific edge habitats).

Indeed, many of these potential predators are inherently less mobile

or have edge-oriented behaviors which may focus their abundance

and impacts along edges. Alternatively, because we utilized freeze-

killed eggs, a portion of the egg removal we observed may have been

due to the activity of scavengers versus true predators that may also

have differing habitat requirements and movement patterns. Future

studies examining the entire egg predator community found in field

edges and their impacts on native coccinellid eggs will be required to

provide mechanistic explanations. In addition, techniques that allow

discerning scavenging from predation may be particularly useful

[33].

Figure 3. Relationships between principal components, egg predation and predator abundance. (A) Negative relationship between PC 3
(a measure of edge composition) and the number of C. maculata eggs remaining after 48 h of exposure to predators in soybean fields (P = 0.002).
Soybean fields boarded primarily by semi-natural habitats had high values of PC3 whereas soybean fields bordered by cropland had low values. (B)
Positive relationship between landscape diversity (Simpson’s D) and the abundance of potential lady beetle egg predators (P = 0.012). Diverse
landscapes supplied a larger number of predators to soybean fields compared with simple landscapes dominated by cropland. (C) Positive
relationship between landscape diversity (Simpson’s D) and the abundance of potential exotic lady beetle egg predators (P = 0.034). Diverse
landscapes supplied a larger number of exotic predators to soybean fields compared with simple landscapes dominated by cropland. (D) Relationship
between PC2 and the abundance of potential exotic lady beetle egg predators (P = 0.071). Soybean fields boarded primarily by urban habitats had
high values of PC2 whereas soybean fields bordered by cropland had low values. Egg and predator data was log (x+1) transformed prior to analysis,
untransformed means are shown here for interpretation.
doi:10.1371/journal.pone.0023576.g003
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Summary, Implications, and Future Work
This study demonstrates that eggs of the native coccinellid, C.

maculata within soybean fields are subject to intense predation from

a variety of native and exotic species. Our original hypothesis was

that soybean fields within landscapes which supply the largest

populations of exotic coccinellids would experience the highest

predation of C. maculata eggs, however, we found nearly equal IGP

in landscapes dominated by native and exotic predators. In

contrast to overall landscape structure driving exotic predator

abundance and impact, we found the composition of the habitats

immediately bordering soybean fields was the strongest predictor

of egg losses. Soybean fields surrounded by semi-natural edges

including habitats such as forests, restored prairies, old fields and

pasturelands experienced greater egg predation than fields

surrounded by other croplands and multiple intraguild predators,

both native and exotic, may contribute to native coccinellid

decline.

A caveat is that the factors we observed influencing

predation on C. maculata may or may not be the same as on

other native coccinellids. Future research should also examine

the role of IGP by both native and exotic predators on rare or

declining native coccinellids such as C. novemnotata, C.

transversoguttata richardsoni, A. bipunctata, and H. convergens.

Moreover, future studies should investigate the interactions

of local predator communities and landscape structure in

shaping the specific outcomes of predator-predator interac-

tions. However, because landscapes with semi-natural field

edges also promote increased pest control [34,35,36] our

results suggest that it may be difficult to simultaneously

manage landscapes to promote pest suppression without also

increasing IGP on native coccinellids.
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Table 3. Summary of AICc model selection statistics for evaluating (1) the intensity of C. maculata egg predation in soybean fields
in Iowa and Michigan, (2) the abundance of all potential egg predators and (3) the abundance of exotic potential egg predators.

Response Model1,2 Log-likelihood Ki AICc Di Wi Adjusted r2

Eggs Remaining y = Bo+B1(PC3)*** 213.15 3 34.70 0.00 0.92 0.53

y = Bo+B1(Area)* 217.16 3 42.72 8.02 0.02 0.17

y = Bo 218.99 2 43.06 8.36 0.01

y = Bo+B1Exotic Predators 217.46 3 43.32 8.62 0.01 0.13

y = Bo+B1Perimeter 217.6 3 43.60 8.90 0.01 0.11

y = Bo+B1All Predators 217.68 3 43.76 9.06 0.01 0.10

y = Bo+B1D 218.12 3 44.64 9.94 0.01 0.04

y = Bo+B1P(PC1) 218.82 3 46.04 11.34 0.00 20.06

y = Bo+B1(PC2) 218.96 3 46.32 11.62 0.00 20.08

y = Bo+B1(Prey) 218.99 3 46.38 11.68 0.00 20.07

Potential Predators y = Bo+B1D* 27.19 3 22.77 0.00 0.71 0.38

y = Bo+B1PC2 29.11 3 26.62 3.85 0.10 0.17

y = Bo 211.06 2 27.19 4.42 0.08 20.05

y = Bo+B1(PC3) 210.28 3 28.96 6.19 0.03 0.03

y = Bo+B1(Perimeter) 210.74 3 29.88 7.11 0.02 20.04

y = Bo+B1(Area) 210.86 3 30.11 7.34 0.02 20.06

y = Bo+B1(Prey) 210.90 3 30.20 7.43 0.02 0.17

y = Bo+B1(PC1) 211.06 3 30.51 7.74 0.01 20.80

Potential Exotic Predators y = Bo+B1D* 29.26 3 26.93 0.00 0.41 0.27

y = Bo+B1PC2* 210.02 3 28.44 1.51 0.19 0.18

y = Bo+B1(PC3)* 210.32 3 29.05 2.12 0.14 0.15

y = Bo 212.01 2 29.09 2.16 0.14

y = Bo+B1(Perimeter) 211.83 3 32.07 5.14 0.03 20.06

y = Bo+B1PC1 211.88 3 32.16 5.23 0.03 20.06

y = Bo+B1(Prey) 211.88 3 32.16 5.23 0.03 20.06

y = Bo+B1(Area) 211.97 3 32.34 5.41 0.03 20.08

The minimum AICc model for each response variable and any competing models (Di,2) are shown in bold.
1Variables in parentheses indicate a negative relationship with response variable.
2* P,0.1, *** P,0.01.
doi:10.1371/journal.pone.0023576.t003
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