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Abstract

DNA barcodes have proven invaluable in identifying and distinguishing insect pests, most notably for determining the

provenance of exotic invasives, but relatively few insect natural enemies have been barcoded. We used Folmer et al.’s

(1994) universal invertebrate primers and Hebert et al.’s (2004) for Lepidoptera, to amplify 658 bp at the 5¢ end of the mito-

chondrial cytochrome oxidase c subunit I (COI) gene in five species of lady beetles from crop fields in six states in the US

Mid-Atlantic, Plains and Midwest: three native species, Hippodamia convergens Guérin-Méneville, H. parenthesis (Say)

and Coleomegilla maculata (De Geer); and two exotic species, Harmonia axyridis (Pallas) and Coccinella septempunctata

Linnaeus. Sequence divergences within species were low, never exceeding 0.9% (Kimura 2-parameter distances). Sequence

divergences between the two Hippodamia species ranged from 14.7 to 16.4%, mirroring the relationships found for other

arthropod taxa. Among the exotic species, C. septempunctata sequences were as variable as those of the three native species,

while H. axyridis populations comprised a single haplotype. Limited data on two Coleomegilla subspecies, C. m. lengi Tim-

berlake and C. m. fuscilabris (Mulsant), are consistent with their belonging to the same species, although morphological

and reproductive data indicate that they represent separate species. Our results support the general utility of COI barcodes

for distinguishing and diagnosing coccinellid species, but point to possible limitations in the use of barcodes to resolve

species assignments in recently divergent sibling species.
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Introduction

DNA barcodes have proven invaluable in identifying

and distinguishing insect pests, including determining

the provenance of exotic invasives (Gleeson et al. 2000;

Ball & Armstrong 2006; Havill et al. 2006; Scheffer et al.

2006), but relatively few insect natural enemies have been

barcoded. Lady beetles (Coleoptera: Coccinellidae) are

important insect natural enemies in agroecosystems

worldwide (Hodek & Honěk (1996). Our goal in this

study was to develop the first barcodes for common

North American coccinellids and evaluate their utility for

diagnostic purposes.

We selected five species of lady beetles from wheat,

sorgum, alfalfa, soybean and cotton fields in six states

in the US Plains, Midwest and Mid-Atlantic: three

native species, Hippodamia convergens Guérin-Méneville,

H. parenthesis (Say) and Coleomegilla maculata (De Geer);

and two exotic species, Harmonia axyridis (Pallas) and

Coccinella septempunctata Linnaeus. Additionally, we

compared populations of two C. maculata subspecies:

C. m. lengi Timberlake and C. m. fuscilabris (Mulsant)

(sensu Gordon 1985). These species were selected for

study because they are widespread and common in the

US, important biological control agents and, for various

reasons, represent interesting subjects for both historical

and prospective genetic studies. All belong to the tribe

Coccinellini, which contains the majority of the larger,

showier lady beetles.

Hippodamia spp. were popular subjects among early

geneticists because of phenotypic variations in their

elytral colour patterns. In contrast, most modern geneti-

cists have favoured more easily reared subjects with

shorter generation times, e.g., Drosophila spp., for insect

variability studies. As a result, our understanding of the

genetics of native North American lady beetles has

progressed relatively little. A study by Timberlake (1919)

showed that H. parenthesis could produce F1 hybrids
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with H. lunatomaculata Motschulsky under laboratory

conditions and that the offspring exhibited intermediate

genitalic characteristics. Chapin (1946) studied colour

pattern variation and genitalic characteristics across the

North American representatives of Hippodamia, and Shull

(1943, 1945, 1946a,b, 1948) made a number of experimen-

tal crosses among the more closely related congeners. For

example, H. convergens was shown to hybridize with

another native species, H. quinquesignata (Kirby), and

even produced an F2 generation and viable offspring in

successive back crosses to both parent species. Modern

studies have focused on the behaviours and distributions

of the aforementioned species, but data on the genetic

variability of field collected populations, and modern

genetic studies on native North American lady beetles as

a whole, are largely lacking. Unfortunately, the feasibility

of such studies is declining rapidly with the introduction

of exotic invasive lady beetles and the subsequent decline

of many North American natives (reviewed in Gardiner

et al. 2009).

Our third native species, the spotted pink lady beetle,

also known as the pink-spotted lady beetle, spotted lady

beetle or pink lady beetle, has long been considered a

single species, Coleomegilla maculata, with a number of

subspecies and varieties widely distributed throughout

the Neotropics and much of the US and southern Canada.

Unlike Hippodamia, Coleomegilla is characterized by con-

servative variations in both elytral colour patterns and

male genitalia, making species determinations difficult

for the layperson. Gordon (1985) recognized three subspe-

cies in North America, but more recent allozyme analyses

and breeding experiments (Coll et al. 1994; Krafsur et al.

1995; Krafsur & Obrycki 2000; Pérez & Hoy 2002) indicate

that C. maculata is a species complex with two species in

America north of Mexico and at least one additional spe-

cies south of the Mexican border. Like the aforementioned

authors, we continue to use the name Coleomegilla macula-

ta and the subspecies designations of Gordon (1985) for

North American members of this genus pending a formal

revision, including comparison with the nominate sub-

species C. m. maculata from South America.

Both the Palearctic C. septempunctata and Asian

H. axyridis were intentionally released as biological con-

trol agents many times in the US, but the exact origin of

established populations remains a matter of debate. Prog-

eny of C. septempunctata collected in India, France, Italy,

Norway and Sweden were repeatedly released in the

eastern and western US as early as 1957, and in eastern

Canada from 1959 to 1960 (Gordon 1985; Wheeler & Hoe-

beke 1995). Established populations of C. septempunctata

were first detected in New Jersey and Quebec in 1973

and attributed to intentional releases against aphid pests

(Schaefer et al. 1987), adventive establishment associated

with air travel (Angalet & Jacques 1975) or transoceanic

commerce (Schaefer et al. 1987; Schaefer & Dysart 1988;

Day et al. 1994; Wheeler & Hoebeke 1995).

Populations of H. axyridis collected in Japan, Russia,

Korea and the former Soviet Union were imported for

propagation and repeatedly released in multiple states

within the US beginning in 1916. Despite repeated sam-

pling, established populations were not detected until

1988 in Louisiana (Chapin & Brou 1991), 1990 in Missis-

sippi, 1991 in Georgia, 1992 in Arkansas, 1993 in Oregon,

and 1994 in Iowa and Illinois (Tedders & Schaefer 1994;

Krafsur et al. 1997). Tedders & Schaefer (1994) suggest

that two independent populations were established, one

in Louisiana and another in Georgia, as the result of

releases made in 1979 and 1980. Day et al. (1994) attribute

the establishment to accidental introductions occurring at

seaports and point out that the established populations

were found hundreds of kilometres from release sites

and after an interval of 8–10 years.

Both C. septempunctata and H. axyridis have become

widespread throughout most of the US, and their pres-

ence has been associated with the decline in abundance of

many native North American lady beetle species

(Wheeler & Hoebeke 1995; Evans 2000; Turnock et al.

2003; Hesler & Kieckhefer 2008). Krafsur et al. (1992, 1997)

studied the genetic diversity of the North American pop-

ulations of both of these exotics in an attempt to answer

questions about their origins and routes of entry into the

US, but they were unable to distinguish between inten-

tional and adventive introductions based on available

data. On the other hand, the genetic similarities observed

among the widely distributed North American H. axyridis

populations (Krafsur et al. 1997) support the hypothesis

of a single introduction followed by rapid spread.

Materials and methods

Insects

The animals were collected by hand or sweep netting,

placed immediately into 80% EtOH, sent to the senior

author and maintained at )20 �C until ready for DNA

extraction. Collecting localities are given in Table 1. At

one of the Kentucky sites, Silver Lake Farm, the collection

was from outside of the crop, in Conium maculatum L.

(poison hemlock). Also, all specimens of C. m. fuscilabris

were collected on Nuphar lutea (L.) (yellow pond lily).

The identities of all animals were verified by the

second author prior to molecular analysis.

Molecular methods

DNA extraction and preliminary amplification. DNA

was extracted from whole animals by the method of
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Rowley et al. (2007), which results in intact complete

specimens suitable for vouchering, and amplified with

two pairs of COI primers: universal invertebrate primers

LCO1490 and HCO2198 (Folmer et al. 1994) and Lepidop-

tera primers LepF1 and LepR1 (Hebert et al. 2004).

Preliminary PCRs (50 lL) contained 2. 5· GoTaq buf-

fer (Promega, Madison, WI, USA), 1.0 lM dNTPs, 1.0 lM

of each primer, 5 lM MgCl2 and 20 ng of genomic DNA.

Thermocycling conditions for primers LepF1 and LepR1

followed Hebert et al. (2004). For amplification with

primers LCO1490 and HCO2198, initial denaturation was

for 3 min at 95 �C, followed by 44 cycles of 1 min at

95 �C, 2 min at 50 �C and 2 min at 72 �C; 5 min at 72 �C

completed the programme.

The success of the reactions was checked by electro-

phoresis of 10 lL of the PCR ⁄ stop reaction in 1.5% aga-

rose in 1.0· TAE buffer.

DNA sequencing. PCR products were purified using

the Wizard PCR preps DNA purification system (Pro-

mega). PCRs for sequencing (BigDye Therminator v3.1;

Applied Biosystems, Indianapolis, IN, USA) totalled

5.5 lL containing 0.5 lL BigDye reagent, 1.5 lL

5· sequencing buffer, 0.3 lL primer (20 lM stock), 1.2 lL

H2O and 2 lL purified DNA template. The thermocycling

profile was initial denaturation for 1 min at 96 �C, fol-

lowed by 44 cycles of 10 s at 96 �C, 5 s at 50 �C and 4 min

at 60 �C; an indefinite hold at 10 �C completed the pro-

gramme. PCR products were sequenced in two directions

on an ABI3100 automated sequencer (Applied Biosys-

tems). Editing and alignments were performed with

Lasergene (DNAStar), utilizing the Clustal W algorithm

for alignment. Nucleotide divergences were expressed as

pair-wise per cent (Kimura 2-P distances), and phyloge-

nies were generated by neighbour joining (Saitou & Nei

1987) with Mega4.1 (Tamura et al. 2007). Only individuals

yielding bi-directional reads were used in the analysis.

Deposition of morphological and DNA vouchers, and DNA

sequences. Extracted coccinellid carcasses were depos-

ited as morphological vouchers, prepared according to

standard museum practices, in the Insect and Mite Col-

lection of the Smithsonian Institution, National Museum

of Natural History (USNM) in Washington, DC; the
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Fig. 1 Neighbour-joining phylogeny of Hippodamia convergens COI haplotype sequences. Complete locality data are presented in

Table 1. Bootstrap support based on 1000 replications. Shaded boxes are collecting localities; numbers in parentheses are numbers of

individuals per locality with each haplotype.
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companion DNA samples were deposited in the USNM

Tissue Collection. Voucher numbers for both carcasses

and DNA are provided in Table 1. Haplotype sequences

were deposited in GenBank; their accession numbers are

also given in Table 1.

Results

Phylogenies for all species except H. axyridis are given in

Figs 1–5. Within-species among-population sequence

divergences were 0.0 for C. m. fuscilabris (the Hughes Hol-

low C. maculata population) and H. axyridis, 0.0–0.5% for

C. m. lengi (all other C. maculata populations), 0.0–0.6%

for C. septempunctata and H. parenthesis, and 0.0–0.9% for

H. convergens. Sequence divergences between H. parenthe-

sis and H. convergens sequences ranged from 14.7–16.4%,

reflecting complete separation of the two species with

99% bootstrap support (Fig. 3), while divergences

between the two C. maculata subspecies ranged from 0.0

to 0.8% and do not support separate species status

(Fig. 4). Sequences of all of the H. convergens collected in a

Tulia, Texas, wheat field diverged from conspecifics

in other localities by more than 14%. When subjected to

BLAST, the Tulia consensus was a 99.5% match to Diura-

phis noxia, the Russian wheat aphid; these animals were

therefore excluded from the analysis. A similarly

divergent H. parenthesis sequence from a Briggsdale, Col-

orado wheatfield was 85.2% identical to H. axyridis and

was therefore excluded from further analysis.

Discussion

A basic criterion for species-specific diagnostic utility of

DNA barcodes is that intraspecific sequence variability

always be less than that among species in the genus, with

the most stringent test involving sister species (Moritz &

Cicero 2004). Although the two Hippodamia species in this

study are not sisters (Chapin 1946), the among-sequence

distances within each of these species were invariably

more than an order of magnitude less than those among

them. This mirrors the situation for COI barcodes in other

species of insects (Ball et al. 2005; Ball & Armstrong 2006;

Rojo et al. 2006; Smith et al. 2006), Collembola (Hogg &

Hebert 2004), spiders (Barrett & Hebert 2005) and Crusta-

cea (Barber & Boyce 2006).

On the other hand, our limited sampling of North

American populations of Coleomegilla maculata failed to

recover the expected (Pérez & Hoy 2002) sister-group

relationship between our Hughes Hollow, Maryland

population of C. m. fuscilabris and samples of C. maculata

from Lexington, Kentucky and Chickasha, Oklahoma

(Fig. 4). Using Gordon’s (1985) revision, members from
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Lamar (1)
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Fig. 2 Neighbour-joining phylogeny of Hippodamia parenthesis COI haplotype sequences. Complete locality data are presented in

Table 1. Bootstrap support based on 1000 replications. Locality labels as in Fig. 1.
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Fig. 3 Neighbour-joining phylogeny of all Hippodamia COI haplotype sequences. Complete locality data are presented in Table 1. Boot-

strap support based on 1000 replications. Locality labels omitted for clarity.

 Cmac Hap1

 Cmac Hap2

 Cmac Hap3

 Cmac Hap4

85

0.0005

Lexington (5)
Chickasha (2)

Chickasha (1)

Chickasha (1)

Hughes Hollow (3)

Fig. 4 Neighbour-joining phylogeny of Coleomegilla maculata COI haplotype sequences. Complete locality data are presented in Table 1.

Bootstrap support based on 1000 replications. Locality labels as in Fig. 1. Hughes Hollow specimens are C. maculata fuscilabris; all other

specimens are C. m. lengi.
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both of the latter localities would be assigned to C. m. lengi,

although the Chickasha sample falls just to the west of

the range he indicated for that subspecies.

Our data on H. axyridis sequence variation are consis-

tent with the hypothesis of a single introduction of that

species to eastern North America (Krafsur et al. 1997;

Lombaert et al. 2010), whereas those for C. septempunctata

suggest multiple introductions from populations with

different COI haplotypes (as this species is known to

comprise; see Marin et al. 2010), a single introduction

involving a diverse inoculum, or some combination of

the two. Sampling of more populations, including those

in their areas of origin in the Old World, would help to

unravel the colonization histories of these two species.

The H. parenthesis population from wheat in Lamar,

Colorado, is notable for comprising just two COI haplo-

types, with one of them (Haplotype 9) a singleton in a

relatively large sample of 25 animals (Fig. 2). Coccinellids

must recolonize annual crops from overwintering sites or

other plant formations each season, which, depending

upon environmental conditions during the previous

season and in diapause (Elliott & Kieckhefer 1990), could

lead to severe population depression or local extinction,

which in any event is more likely for H. parenthesis than

the other species because of smaller population sizes

(Elliott & Kieckhefer 1990; Elliott et al. 1998). Indeed,

H. parenthesis is less apt to be present continuously in the

same localities than other Hippodamia species (Elliott et al.

1998). Nevertheless, none of the other well-sampled

native coccinellid populations sequenced in this study

experienced such a pronounced bottleneck. Possible pre-

cipitating factors include insecticide use and competition

with exotic species. Finally, unlike Springfield and

Briggsdale, Lamar is at the edge of this species’ range

(Gordon 1985); sampling along transects from the edge

into the core of the range would clarify whether this has

any bearing on the uniqueness of the Lamar H. parenthe-

sis population.

In conclusion, our study supports the general utility of

COI barcodes for distinguishing and diagnosing coccinel-

lid species, including congeners; however, the method

may fail to distinguish recently diverged sibling species

 C-7 Hap7

 C-7 Hap10
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 C-7 Hap6
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 C-7 Hap2
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Fig. 5 Neighbour-joining phylogeny of Coccinella septempunctata COI haplotype sequences. Complete locality data are presented in

Table 1. Bootstrap support based on 1000 replications. Locality labels as in Fig. 1.
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(Fig. 5). In such cases, reciprocal crosses between nomi-

nal taxa (e.g. Krafsur & Obrycki 2000; Pérez & Hoy 2002)

could be made to assess the presence of reproductive bar-

riers (Mayr 1970). The inclusion of additional morpholog-

ical, molecular, behavioural and ecological characters,

along with distributional data, could also contribute to a

fuller understanding of relationships.
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