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Coccinella novemnotata, the nine-spotted lady beetle, was historically one of the most common lady bee-
tles across the US and southern Canada. In the 1980s it became extremely rare and has remained rare. In
2008 adult C. novemnotata were collected from field populations in Oregon and South Dakota and initial
observations suggested that these individuals seemed smaller than the mean size of the species histori-
cally. These observations led to a series of experiments to determine if there had been significant
decrease in size and if any decrease found was due to a genetic change or to environmental factors. In
the first of these studies we quantified the size of C. novemnotata collected in the field and the size of Coc-
cinella septempunctata, a congeneric introduced species that was collected in the same habitats and has
been implicated as a cause for C. novemnotata decline. The size of these field-collected individuals of both
species was compared with the size of historical specimens and individuals reared in the laboratory.
Field-collected C. novemnotata adults were significantly (20%) smaller than specimens bred in captivity
and specimens from collections. To determine if prey limitation alone could yield the range of sizes
observed we reared larvae across a range of prey availability. There was a significant effect of prey avail-
ability and adult sizes across treatments bracketed the range we found in the field. Low fed larvae are
significantly smaller than high fed larvae. While these results do not definitively point to any single
explanation for the decline of this species they are consistent with expectations for competition between
C. novemnotata and C. septempunctata.
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1. Introduction

1.1. Background

Body size is correlated with many determinants of fitness
(Blueweiss et al., 1978) including fecundity (Honek, 1993), survival
(Savage et al., 2004), and the ability to secure resources such as
prey (Menge, 1972) and mates (Howard et al., 1997). The study
of why some species’ average body sizes have changed over time
while others have not has the potential to shed light on the impact
of several broad-scale long-term environmental changes including
climate change (Roy, 2008; Smith et al., 1995) and interactions
with invasive species (Brown and Maurer, 1986; Phillips and Shine,
2004). If the focal species is a biological control agent then changes
in body size may impact its ability to suppress pest populations. If
a species that was introduced as a biological control agent is partly
or fully responsible for the size change in the focal species then
there are potentially serious nontarget issues that need to be
addressed (Phillips and Shine, 2004).

Once it has been determined that the mean size of individuals of
a focal species has changed significantly over time beyond non-
time dependent levels of variation (e.g. clines), discovering the
reason for the change can offer insights into how the organism
interacts with its changing environment. Comparing size changes
of multiple species from similar habitats can allow additional in-
sights by discerning why some species are impacted while others
are not. Several factors could account for a shift in mean size over
time, including (1) a change in resource availability, (2) infection
with a pathogen, (3) size-dependent mortality, or (4) a genetic shift
to a different size. Ecological factors (1–3 above) can be separated
from genetic changes by manipulating ecological conditions while
controlling for genetic factors (Naguib and Gil, 2005).

While the causes and consequences of body size have been
studied for almost all animal taxa, one group where clear effects
have been demonstrated is the insects. Both underlying genetic
variation (Dingle, 1984) and environmental conditions during
development (Gullan and Cranston, 1994; Hodek and Honek,
1996) have been shown to impact adult size in insects. Within this
class of animals, prey availability during development, specifically,
has been shown to impact body size in coccinellids (Blackman,
1965; Honek, 1993; Obrycki and Orr, 1990; Orr and Obrycki,
1990; Phoofolo et al., 2008).

One species of coccinellid of great current interest is the nine-
spotted lady beetle Coccinella novemnotata Herbst. Up until the
mid-1980s, this was the most prevalent species of lady beetle in
the northeastern United States (Harmon et al., 2007). It served as
an important biological control agent, moderating aphid popula-
tions in gardens and crops throughout the northeast. Yet, in
1993, an extensive USDA APHIS coccinellid survey found no evi-
dence of the nine-spotted lady beetle in eleven Northeastern
states. This cooperative study focused on 100 counties and was
based on comprehensive fieldwork and data from personal collec-
tions. The most recent published records report that the nine-
spotted lady beetle was last collected on the eastern seaboard in
1992 (Harmon et al., 2007). For more than a decade, entomologists
have pondered the disappearance of C. novemnotata, but specu-
lated that it might continue to persist in low densities across the
United States (Wheeler and Hoebeke, 1995). The initial decline in
the C. novemnotata population in eastern North America appears
to align with the introduction of the European, seven-spotted lady
beetle (Coccinella septempunctata) (Wheeler and Hoebeke, 1995).
The seven-spotted lady beetle has since proven to be a powerful
alternative to chemical management of agrarian pests (Hoffmann
and Frodsham, 1993), but it may have had a negative impact on
native species of coccinellids (Alyokhin and Sewell, 2004; Elliot
et al., 1996; Ellis et al., 1999; Simberloff and Stiling, 1996; Snyder
et al., 2004; Staines et al., 1990; Wheeler and Hoebeke, 1995).
Several alternative hypotheses have been proposed to explain the
decline of C. novemnotata (e.g. land use change, climate change)
that do not cite the introduction of C. septempunctata as the cause.
These theories are logical in principle, but do not appear to align
directly with the known time period for C. novemnotata disappear-
ance (see Harmon et al., 2007).

The primary challenge in reaching a definitive conclusion
regarding the effects of C. septempunctata on C. novemnotata is that
very little data were systematically collected as C. septempunctata
expanded and C. novemnotata contracted its range (Gordon,
1985; but see Evans, 2000). The Lost Ladybug Project (www.lostla-
dybug.org), founded in 2000, utilizes citizen science to track the
distribution and abundance of lady beetles across North America.
It is the first initiative that attempts to fill the void left by the
historical lack of methodological surveys. Since its inception, the
Lost Ladybug Project has collected over 11,000 lady beetle speci-
mens, and its investigators have established sustainable colonies
of rare coccinellids. In 2006, after a 14-year lapse of sighting, a
nine-spotted lady beetle (C. novemnotata) was discovered in
Washington, DC (Losey et al., 2007). A grant from the National
Science Foundation has allowed the Lost Ladybug Project to broad-
en its outreach and, since 2008, the initiative has logged images of
over 40 individual C. novemnotata and collected over 30 live spec-
imens, exclusively from the western states. Cornell University is
home to one of just two colonies of C. novemnotata in the United
States. Initial observations of the live C. novemnotata that were col-
lected by the Lost Ladybug Project in 2008–2009 suggested that
the individuals appeared to be notably smaller than historical
specimens while the mean size of individuals of its congeneric
potential competitor, C. septempunctata, did not appear changed.
1.2. Objectives

We initiated this study by assessing if the average size of C. nov-
emnotata adults was indeed declining. To accomplish this we
determined if the size of current C. novemnotata populations fell
within the historical size range of individuals before the species
declined. To investigate the causes and consequences of size
change in C. novemnotata individuals in field populations we then
compared the sizes of recently collected C. novemnotata and C. sep-
tempunctata specimens to the offspring of field-collected adults
which have been reared in the laboratory with access to ad libitum
prey. Finally, to ascertain if prey limitation could be the sole cause
of size decline we set out to determine if the range in size of re-
cently collected adult C. novemnotata could be duplicated by vary-
ing access to prey.
2. Methods

2.1. Rearing lady beetles

Adult C. novemnotata were placed in a separate colony and al-
lowed to mate freely. All beetles, regardless of developmental
phase, were placed on a 16 h light cycle, and lab temperature
was set at a consistent 21 �C. Eggs were collected from each colony
and observed for signs of fertilization. Coccinellid eggs are nor-
mally bright yellow to orange in color. Viable eggs retain the color-
ation, while nonviable eggs shrivel and turn dark brown or black
within 2–3 days of oviposition. Clusters of viable eggs were placed
in cylindrical, plastic containers, each with a volume of 44 ml. Each
container stored a single egg cluster. Each cluster yielded approx-
imately 3–7 individual first-instar larvae after approximately four

http://www.lostladybug.org
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Table 1
The number of beetles measured from each origin.

Origin Species Sample size Mean area (l �w) ± SEM Location Date collected

Field collected (P1) C. novemnotata 8 24.82 ± 2.29 OR June 10–11, 2009
Field collected (P1) C. novemnotata 13 24.95 ± 1.79 SD/NE June 18, 2008; early July 2009
Field collected (P1) C. novemnotata 6 29.66 ± 2.64 UT Spring 2011
Field collected (P1) C. novemnotata 11 24.36 ± 1.95 CO May 27, 2011
Raised in culture (F1) C. novemnotata 41 37.66 ± 1.62 NY (Cornell) –
Raised in culture (F1) C. novemnotata 33 25.17 ± 1.13 SD (USDA) –
Collection C. novemnotata 180 30.71 ± 0.48 NY (CUIC) –
Collection C. novemnotata 74 28.09 ± 0.75 DC (Smith.) –
Collection C. novemnotata 50 35.56 ± 0.91 UT –
Field collected (P1) C. septempunctata 16 36.59 ± 1.62 OR June 10–11, 2009
Raised in culture (F1) C. septempunctata 41 41.15 ± 1.01 NY (Cornell) –
Collection C. septempunctata 20 36.77 ± 0.80 NY (CUIC) –
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days. To provide prey, the lab maintains a mixed colony of Acyrtho-
siphon pisum (pea aphid) and Myzus persicae (green peach aphid).
The aphids were reared on Vicia faba (fava bean), and the aphid col-
ony was kept in a moist growth chamber, at a constant tempera-
ture of 23 �C. Feeding practices were kept consistent until larvae
reached the third instar. Developmental instar was confirmed by
counting the number of moults. All individuals in a container were
determined to have moulted when the number of exuviae equaled
the number of larvae. No larvae moulted twice before all individu-
als had completed a single instar. At the third instar, larvae were
separated into individual containers, each with a piece of paper to-
wel to be used as an anchor for later pupation. After hatching, it
took each larva approximately 4–5 days to reach third instar. Each
third instar larva was fed roughly 15 aphids daily. Individuals were
closely observed for fungal infection (Microsporidia) until pupation.
From the onset of the third instar, it took each larva approximately
7 days to pupate. Each individual spends about 1 day in a pre-pu-
pal stage where the larva ceases to eat and appears sluggish. It took
approximately 4 days to emerge as adults. All newly emerged adult
coccinellids were not fed for 24 h as their elytra hardened. Once
they resumed normal feeding habits (roughly 15 aphids daily),
adult coccinellids were returned to their respective colonies to
mate.
2.2. Measuring lady beetles

Lady beetles for measurement were acquired from (1) field col-
lections {P1} from eastern Oregon, northwestern Nebraska, and
southwestern South Dakota, (2) the following insect collections:
The Cornell University Insect Collection, The Smithsonian Institu-
tion, The Utah State University Insect Collection and, (3) laboratory
colonies {F1 and beyond} maintained at Cornell University and at
the USDA-ARS Laboratory in Brookings, South Dakota. The number
of beetles measured from each origin is listed in Table 1. All of the
individuals used for this study were dead. Coccinellids from collec-
tions were pinned specimens. All other specimens were stored in
70% isopropyl alcohol.

Measurements were taken using calipers or a microscope
micrometer, both with accuracy to 0.01 mm. Individuals taken
from storage in alcohol were allowed to dry before dimensions
were taken. To enhance visual contrast, coccinellids were placed
on white filter paper. The length measurement was taken from
the tip of the head to the tip of the abdomen. The width measure-
ment was taken across the widest portion of the insect. For some
specimens, height was also measured to allow calculation of vol-
ume as, potentially, the most accurate measure of overall size. In
order to acquire height measurements, each individual was placed
on its side, and the dimension was again calculated across the wid-
est portion of the abdomen. The volume was determined using a
formula for hemi-ellipsoid volume: (4/3)p[(Length)/2 � (Width)/
2 � (Height)]. Regression analysis confirmed that area (l �w) is
an excellent predictor of volume (R2 = 0.998). Since coccinellids
are generally ovate, area could be expressed as the area of an el-
lipse (l �w � p) but since the amount of curvature at both anterior
and posterior varies among species and individuals we chose to
analyze and present all data as simple rectangular area (l �w).
Hereafter, we will use ‘‘size’’ to denote rectangular area (l �w).

2.3. Feeding study

In order to determine the effects of prey availability on ulti-
mate adult size, 104 first-instar C. novemnotata larvae were se-
lected from the laboratory colony, and divided into five
subgroups to be reared at varying prey levels. Larvae were placed
in individual containers within 24 h of hatching with a piece of
paper towel as an anchor for eventual pupation. Containers were
labeled to represent the appropriate experimental group. Larvae
were fed a random mix of pea and green peach aphids at densities
of 1, 3, 12, 21, or 30 aphids per 24-h period. All uneaten aphids
were removed before new aphids were added, so uneaten aphids
did not accumulate in the containers. Twenty replications were
set up for each treatment except for prey densities of 1 and 12
for which 22 replications were initiated. The feeding regimens
were selected based on preliminary studies to produce variation
in adult sizes, while preserving a high level of survivorship at
the higher levels. Aphids were replaced every 24-h regardless of
the number consumed in the previous period. Developmental
stage and all fatalities were noted daily for each individual until
each of the original 104 individual beetles died. Upon emergence,
adults were fed while their elytra hardened. Within 5 days of
emergence, measurements of adult length, width, and height were
taken as noted above.

2.4. Statistical analysis

Since sex ratio data was not available for all data sets and since
the sex ratio was approximately 50:50 for all groups of adult bee-
tles, sexes are lumped for calculating mean beetle sizes. The rela-
tionships between longitude, latitude, year, Julian date, elevation
and all their interactions and the size of C. novemnotata from mu-
seum collections were analyzed individually with a regression
analysis on JMP using backward selection starting with the satu-
rated model. The mean size of C. novemnotata adults from different
geographic locations was compared with t-tests adjusted by a post
priori Bonferroni correction (critical p = 0.05/number of compari-
sons; Scheiner and Gurevitch, 2001). Since all locations were not
significantly different they were grouped. Adult beetle sizes across
the two species (C. septempunctata, C. novemnotata) and three ori-
gins (field collected, laboratory-reared, and museum collections)
were analyzed using an ANOVA using JMP with experimental error



Fig. 1. Mean size (mm2 with SEM as positive error bars) of C. novemnotata and C.
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rates controlled by using Tukey’s Honest Significance Test for
means separation tests. The relationship between the number of
aphids offered per day and adult beetle size was also analyzed with
a regression analysis on JMP with treatment levels log transformed
to preserve linearity. The relationship between prey level and the
proportion of individuals that survive to adulthood was analyzed
as a logistic regression between the number of aphids offered per
day and the number in each of two binomial states; survival (to
adulthood) or death. Because of the parabolic shape of the relation-
ship and because initial regression confirmed the significance of a
quadratic term the number of aphids offered was transformed as
X�0.024X2 prior to the analysis. R2 for the transformed regression
was estimated using Efron’s R2 which is equivalent to squaring the
correlation coefficient between predicted and observed Y values
(Osborne, 2008).
septempunctata adults from recent field collections (P1), laboratory colonies (F1),
and historical collections.

Fig. 2. Relationship between the number of aphids available per day to developing
C. novemnotata larvae and resulting mean adult size (mm2).
3. Results

3.1. Determining the most appropriate historical comparison

Using a backward selection model-building process we deter-
mined the optimal model contained elevation, latitude, longitude
and an elevation by latitude interaction. The equation for the opti-
mal model was: Size = 26.24 + 0.002(Elevation) + 0.25(Lati-
tude) + 0.08(Longitude) + 0.0003(Elevation � Latitude). Although a
significant relationship was found for this model (p = 0.0001) it ex-
plains very little of the variation in beetle size (R2 = 0.10). Surpris-
ingly, the relationship between all three factors (elevation, latitude,
and longitude) and size was positive. This predicts that beetles will
be larger as collection sites move towards higher elevations and in
a northwesterly direction. Given that this positive relationship
would predict larger rather than smaller beetles for our relatively
high elevation samples from the northwestern US and given the
low proportion of size variation explained we decided not to in-
clude any of the clines or their interactions in further analyses.
We deemed it most appropriate to use a pooled mean measure-
ment for all historical C. novemnotata specimens as the comparison
against our recent samples.
3.2. Size comparisons

Factorial analysis of coccinellid species and origin revealed a
significant effect of species (p < 0.0001) and origin (p < 0.0001)
and a significant interaction between species and origin
(p = 0.03). Across all origins, C. septempunctata adults were signifi-
cantly larger than C. novemnotata adults with mean sizes of 38.17
and 29.29 mm2, respectively. Within each individual origin C. sep-
tempunctata adults were significantly larger than C. novemnotata
adults. Across both species the size of recently field-collected
adults (P1) were significantly smaller than the size of adults from
historical collections that were significantly smaller than labora-
tory-reared adults (F1) with means of 30.75, 33.82, and
36.62 mm2, respectively. Since the interaction between species
and origin was significant we compared individual species-origin
combinations and found that this effect was driven primarily by
C. novemnotata. Combined historical (collection) specimens were
significantly larger than the recently collected C. novemnotata
adults (P1) (Fig. 1). The offspring of the field-collected C. novemno-
tata adults reared in the laboratory without prey limitation (F1)
were also significantly larger than their parental generation
(Fig. 1). C. septempunctata adults collected from the field were
not significantly different from either adults from historical collec-
tions or adults reared in the laboratory without prey limitation
(Fig. 1).
3.3. Feeding study

Prey availability during development was found to have a sig-
nificant impact on adult C. novemnotata size and mortality. Prey
availability had a significant positive relationship with adult beetle
size (p = 0.0001) explaining over 70% of the variability (R2 = 0.72;
see Fig. 2). Adult size (measured as l �w) ranged from
18.78 mm2 at a prey level of 3 per day to 50.12 mm2 at a prey level
of 30 aphids per day. Prey availability also had a significant positive
relationship with the proportion of larvae that survived to adult-
hood (p < 0.00001) explaining over 80% of the variability
(R2 = 0.81; see Fig. 3). The proportion of larvae that survived ranged
from 0.00 when given one aphid per day to 0.75 at 21 aphids per
day. Although the size of C. novemnotata individuals increased as
prey availability increased from 21 to 30 aphids per day, the pro-
portion of larvae that survived decreased to 0.60 at 30 aphids per
day.
3.4. Extrapolating feeding study data to field populations

Based on a mean size of 24.90 for the recently field-collected
adults this implies they may have had a diet of 4.57 aphids per
day (95% confidence limits 3.39–5.70) in the field. Based on our lo-
gistic relationship this implies a survival rate of approximately
23%, which is less than a third of the mean maximum survival
we found (75%) at 21 aphids per day.



Fig. 3. Relationship between the number of aphids available per day to developing
C. novemnotata larvae and resulting mean probability of survival to adulthood.
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4. Discussion

When C. novemnotata adults were collected in the field, obser-
vations suggested that the mean size of these individuals was
smaller than the mean historical size for this species. To test this
hypothesis we first needed to determine if the adults we collected
might be on the tail of an environmental cline. Pinned collections
from around North America offered a wealth of data on historical
size but it would have been inappropriate to compare the size of
our adult beetles collected in the Northwest quadrant of the U.S.
at relatively high altitudes to a simple mean size found in collec-
tions if the size of historical populations varied across either geo-
graphic location or altitude. Our results show that the size of
adult C. novemnotata from historical populations did vary signifi-
cantly across latitudinal, longitudinal, and elevational gradients.
However, only a relatively small proportion of the variation was
explained. It is interesting that size was positively correlated with
elevation and latitude. This trend follows ‘‘Bergmann’s rule’’ which
was developed for warm-blooded vertebrates (Bergmann, 1847)
and states that body size increases with latitude and more gener-
ally lower temperatures. The trend we found is counter to the
trend that other studies have found for other insects (Vamosi
et al., 2007; Peck and Chapelle, 2003; Orr, 1996). Since the analysis
from pinned specimen data predicts that adult C. novemnotata
from high elevations in the Northwestern U.S. should be relatively
larger then those from other areas and since very little of the size
variation is actually explained, we concluded that the most appro-
priate comparison of sizes of our recently collected adults (which
we suspected were smaller) was with a large, broad mean of his-
torical C. novemnotata adult sizes.

The recently collected C. novemnotata adults were significantly
smaller than adults from historical populations (see Fig. 1). This
raises two possibilities. Either C. novemnotata sizes have evolved
to be smaller or the potential for larger sizes remains but adult
beetles are prevented from attaining larger adult sizes because of
ecological conditions (resource limitation, infection, size-depen-
dent predation). When reared in the laboratory the first generation
descendents (F1) of the field-collected adults (P1) were physically
larger than (although not quite significantly) historical popula-
tions. This implies that the potential for larger adult size is genet-
ically maintained in C. novemnotata and that whatever factor that
is preventing them from reaching this size in the field is not pres-
ent in the laboratory.

Although several factors could contribute to smaller size in the
field, we focus on one bottom-up factor: prey availability. We rea-
son that although pathogens can directly lower adult size (Boots
and Begon, 1994), if infection was the cause of the smaller size of
our beetles in the field it would have had the same impact in the
captive population.

Following this line of reasoning we focus on prey availability as
a plausible cause for the smaller size of recently collected C. nov-
emnotata adults. Predatory insects show a range of responses to
varying levels of prey availability during development. Lower prey
levels during development can lead to decreases in survival to
adulthood and smaller adult size (Pereyra and Archangelsky,
2007). This is the pattern that we found in our study (see Figs. 2
and 3). In fact, the mean size of field-collected adults fell within
the range produced by our feeding trials, implying that prey limi-
tation alone could produce the sizes we observed.

In our study, prey availability during development affected the
probability of survival to adulthood as well as the size of the adults
that emerged. The probability of survival through development in-
creased with increasing prey availability in the range of 1–21
aphids/day but then declined going from 21 to 30. This implies that
for this species it is possible to eat too many aphids and lose fit-
ness. The mean size of C. novemnotata adults we collected in the
field were nowhere near this ‘‘obesity’’ level. Their average size
was almost 25 mm2, which suggests they may have had access to
approximately 5 aphids per day. This is a level of prey that exhib-
ited only one third of the maximum survival we measured and
could possibly have impacts on fecundity as well. The decreased
fitness implied by the difference between current and historical
adult C. novemnotata sizes appears severe enough to account for
their observed decline in density and range.

If prey limitation is a contributing mechanism for decline, then
the ultimate reason for the limited level of prey available to C. nov-
emnotata and C. septempunctata deserves examination as a poten-
tial cause. This foreign species inhabits a very similar niche to C.
novemnotata and usually in much higher densities. The Lost Lady-
bug Project lists 1758 records of C. septempunctata and only 45 for
C. novemnotata. At the eastern Oregon collection site the ratio of C.
septempunctata to C. novemnotata was greater than 20 to 1. In a re-
cent submission from Idaho, students in Jerry Severe’s science class
submitted over 730 identifiable lady beetle images to the Lost
Ladybug Project. Over 75% of these were C. septempunctata while
only 1 was a C. novemnotata. Beyond the disparity in density, C.
septempunctata appears to be thriving at much closer to its poten-
tial than C. novemnotata based on the lack of difference between
the size of field-collected, historical and laboratory-reared individ-
uals (see Fig. 1). One insect predator may limit the prey available to
another by interference with foraging (McPeek et al., 2001) or
more commonly through scramble competition. There are docu-
mented cases of native predator species suffering lowered access
to prey through scramble competition with the introduced species
(Elliot et al., 1996; Evans, 1991).

If scramble competition is lowering prey densities available to
C. novemnotata during development the immediate result could
be smaller adult size. Day and Tatman (2006) suggest that north-
eastern aphid populations are, in fact, steadily declining. Evans
(2000) did not find evidence for a decline in body size for five na-
tive species as C. septempunctata densities increased in Utah in the
1990s. C. novemnotata, which was already very rare in Utah at that
time, was not found in sufficient number to be included in the
analysis (Evans, 2000). The evidence that (1) both species occur
in the same habitats, (2) they are known to exploit the same prey,
and (3) that lack of prey could cause the decline in mean C. nov-
emnotata body size observed, inspired the hypothesis that C. nov-
emnotata sizes have diminished due to lack of prey caused by
scramble competition with C. septempunctata and that the smaller
size of C. novemnotata is associated with lower fitness that led to
their decline.
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Some authors have suggested that C. septempunctata cannot be
the sole reason for the decline of C. novemnotata because in some
areas the decline seems to have preceded the invasion (Fothergill
and Tindall, 2010). C. septempunctata may have moved in to occupy
an incompletely filled niche after C. novemnotata had already be-
gun its decline. In this case the main role of C. septempunctata
may have been in preventing the reestablishment or rebounding
of C. novemnotata. However, it also seems possible that upon arri-
val in new areas the earliest C. septempunctata invaders were mis-
identified or simply missed while still at low densities. Delayed
detection has been documented for other invasive insects such as
the cereal leaf beetle, Oulema melanopus (Haynes and Gage,
1981). While the introduced species is unlikely to have had a major
impact at low initial densities its being overlooked could have
caused the invasion clock to be initiated with an incorrect date.
It also seems plausible a ‘‘wave of decline’’ could have hit a native
species like C. novemnotata in a given area before the invading spe-
cies arrived. If C. novemnotata dispersed equally in all directions
but back dispersal was limited from one or more directions due
to previous decline in another region, then decline could have pre-
ceded invasion. These types of sinks for populations, termed eco-
logical traps, have been examined theoretically (Robertson and
Hutto, 2006) and their potential to impact insect predator popula-
tions has been documented (Ries and Fagan, 2003).

Our study demonstrates that C. novemnotata adults are signifi-
cantly smaller than they were historically and that prey availability
alone is sufficient to account for this decrease in size. While our
evidence is consistent with expectations if C. septempunctata were
to negatively impact C. novemnotata through scramble competi-
tion, it is not exclusive of other potential mechanisms including
competition for non-prey resources, intraguild predation, intro-
duction of parasitoids or pathogens, and hybridization (Harmon
et al., 2007). We suggest further study of current and historical dis-
tributions of C. novemnotata and C. septempunctata along with di-
rected laboratory studies and modeling efforts to elucidate if C.
septempunctata played a role in prey limitation leading to the de-
cline of C. novemnotata.
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