

PII: S0040-4039(97)01491-3

Synthesis and Absolute Configuration of Two Defensive Alkaloids from the Mexican Bean Beetle, *Epilachna varivestis'*

Xiongwei Shi, Athula B. Attygalle, and Jerrold Meinwald Baker Laboratory, Department of Chemistry, Cornell University, Ithaca, New York 14853

Abstract: Syntheses of (2S, 12'R)-2-(12' - aminotridecyl)-pyrrolidine (1) and (2S, 12'R)-1-(2'' - hydroxyethyl)-2-(12' - aminotridecyl)-pyrrolidine (2), two defensive alkaloids recently isolated from the Mexican bean beetle, *Epilachna varivestis*, are described. By a comparison of ¹H NMR data of MTPA derivatives of natural alkaloid 2 with those of the synthetic standard, we confirm the (2S, 12'R) configuration previously suggested for this alkaloid. Further support of these assignments was provided by the synthesis and ¹H NMR investigation of (2S, 12'S)-1, (2S, 12'S)-2, and their MTPA derivatives. © 1997 Published by Elsevier Science Ltd.

The hemolymph of ladybird beetles (Coleoptera, Coccinellidae) often contains a highly diverse set of alkaloids which protect these insects from predators.² Recently, our group characterized two alkaloids, 2-(12'-aminotridecyl)-pyrrolidine (1) and 1-(2''-hydroxyethyl)- 2-(12'-aminotridecyl)-pyrrolidine (2), from the Mexican bean beetle, *Epilachna varivestis*.³ Proksch *et al.* also showed the presence of 2, along with other alkaloids, in all four life stages of this beetle.⁴ To determine the stereochemistry of 1, we synthesized a diastereomeric mixture of (2R, 12'R)-1 and (2R, 12'S)-1 and assigned the (2S, 12'R) configuration to the natural alkaloid 1 by a comparison of ¹H NMR data of the MTPA diamide of the natural alkaloid 1 with those of the synthetic material.⁵ Since 2 is structurally very similar to 1, we anticipated that 2 should have the same stereochemistry. We now describe syntheses of two pairs of diastereomers, (2S, 12'R)-1 and (2S, 12'S)-1, (2S, 12'R)-2 and (2S, 12'S)-2, and confirm the (2S, 12'R) configuration for both natural alkaloids by ¹H NMR comparison of their MTPA derivatives with those of these synthetic samples.

Our synthetic strategy for (2S, 12'R)-1 and (2S, 12'R)-2 featured a coupling of two chiral moieties to a linear α, ω -diyne chain at two termini. As shown in Scheme 1, chiral vinylic bromide (*R*)-6 was prepared from (*R*)-2-pyrrolidinol (3) in three steps: protection of the amino group with Boc₂O,⁶ oxidation with Py.SO₃,⁷ and a Wittig coupling.⁸ To obtain the other chiral moiety, (*S*)-methyl lactate (7) was reduced with LiAlH₄ and the primary alcohol group of the product was tosylated to give 8.⁹ Treatment of 8 with KOH afforded the volatile

epoxide 9 in high optical purity.¹⁰ A selective opening of the epoxide ring with 1,7-octadiynyl lithium gave the desired diynol 10 in 71% yield. A palladium-catalyzed coupling of the vinyl bromide (6) to (S)-10 provided the backbone of the target alkaloids.¹¹ This rather unstable intermediate, without isolation, was hydrogenated immediately over Pd/C, to give the saturated pyrrolidinol (2S,12'S)-11 in 49 % overall yield. The conversion of the 12'S-hydroxyl group of (2S,12'S)-11 into an azide to give (2S,12'R)-12 was accomplished with N₃ /DEAD.¹² Removal of the Boc group with HCl/EtOAc provided the pyrrolidine (2S,12'R)-13 quantitatively,¹³ which was subsequently reduced with LiAlH₄ to the desired alkaloid (2S,12'R)-1 in 69% yield. For the synthesis of (2S,12'R)-2, (2S,12'R)-13 was acylated with BnOCH₂COCl to give the amide (2S,12'R)-14 in 89% yield. The treatment of (2S,12'R)-14 with LiAlH₄ not only reduced the azide moiety to the corresponding amine and the carbonyl group to a methylene group, but also unexpectedly removed the protecting group to some extent, providing the final product (2S,12'R)-2 along with the undeprotected intermediate. Finally, this mixture was subjected to hydrogenolysis over Pd/C to yield (2S,12'R)-2 in 77% overall yield.

Scheme 1. (a) (*t*-BuOCO)₂O, CH₂Cl₂, 0 °C, 0.5 h, then 25 °C, 12 h; (b) Py.SO₃, DMSO, TEA, -10 to 15 °C, 15 min; (c) Ph₃PCH₂Br₂/NaN(TMS)₂; THF/PhCH₃/HMPA, -78 °C to 25 °C, 1 h; (d) LiAlH₄, THF, 25 °C, 1 h; (e) TsCl, TEA, CH₂Cl₂, -15 °C, 20 h; (f) KOH, H₂O, 3 h; (g) *n*-BuLi/1,7-octadiyne, Li₂CuCl₄, THF/HMPA, -20 °C, 12 h; (h) 6, Pd(Ph)₄, Cul, *n*-BuNH₂, C₆H₆, 25 °C 12 h; (i) H₂/Pd 10% on carbon, THF, 48 h; (j) DEAD, P(Ph)₃, (Ph)₂PON₃, THF, 25 °C, 24 h; (k) HCl, EtOAc, 25 °C, 0.5 h; (l) KOH/ $_{2}O$, etter, 25 °C; (m) LiAlH₄, THF, 25 °C, 1 h; (n) BnOCH₂COCl, TEA, CH₂Cl₂, 0°C, 12 h; (o) LiAlH₄, THF, 50 °C, 12 h; (p) H₂/Pd 10% on carbon, 1 h; (q) (*R*)-Mosher chloride, pyridine, CH₂Cl₂, -20°C, 12 h.

The corresponding diastereomers, (2S, 12'S)-1 and (2S, 12'S)-2, were prepared as outlined in Scheme 2. The inverted product (2S, 12'R)-11 was obtained from (2S, 12'S)-11 by a Mitsunobu reaction with DEAD/C₆H₅CO₂H followed by alkaline hydrolysis.^{14,15} The subsequent synthetic procedures were similar to those described for (2S, 12'R)-1 and (2S, 12'R)-2.

Scheme 2. (a) DEAD, Ph₃P, C₆H₃CO₂H, THF, -50 °C, 0.5 h, then 25 °C, 2h; (b) KOH, MeOH, 25 °C, 12 h; (c) DEAD, Ph₃P, (Ph₂PON₃, THF, 25 °C, 24 h; (d) HCl, EtOAc, 25 °C, 0.5 h; (e) KOH/H₂O, ether, 25 °C; (f) LiAlH₄, THF, 25 °C, 1 h; (g) BnOCH₂COCl, TEA, CH₂Cl₂, 0°C, 12 h; (h) LiAlH₄, THF, 50 °C, 12 h; (i) H₂/Pd, 10% on carbon, 1 h; (j) (R)-Mosher chloride, pyridine, CH₂Cl₂, -20°C, 12 h.

As reported previously,⁵ the four stereoisomers of 1 can be distinguished by ¹H NMR analysis after attaching an MTPA moiety onto both the primary and secondary amino groups of 1. Accordingly, the (S)-MTPA diamide of the synthetic (2S,12' R)-1 [namely (α S,2S,12' R, α S)-15], was prepared using (R)- α -methoxy- α -(trifluoromethyl)phenylacetyl chloride [(R)-MTPA chloride] (Scheme 1). ¹H NMR (500 MHz) analysis of this derivative showed that the spectral data of (α S,2S,12' R, α S)-15 are congruent with those of (S)-MTPA diamide derived from the natural alkaloid 1. In contrast, ¹H NMR data of the (S)-MTPA derivative (α S,2S,12' S, α S)-15 prepared from (2S,12' S)-1 (Scheme 2) showed a signal at δ 1.12 for the C-13' methyl doublet, clearly distinguishable from the corresponding peak at δ 1.18 in the spectrum of the (S)-MTPA derivative prepared from the natural alkaloid 1. Since neither (2R,12' S)-1 nor (2R,12' R)-1 is identical with the natural isomer, the absolute configuration of the natural alkaloid 1 was unambiguously established to be (2S,12' R), confirming our previous assignment.⁵ This assignment is also consistent with the observed specific rotations {synthetic (2S,12' R)-1: [α]²²_D + 9.8°, c 0.25, CDCl₃ natural alkaloid 1: [α]²²_D + 9.3°, c 0.15, CDCl₃].⁵

Since no apparent interaction was observed between the two chiral centers of alkaloid 1 or its MTPA derivatives⁵, we hypothesized that there is also no significant mutual influence between the two chiral terminal moieties of alkaloid 2 or its MTPA derivatives as well. The (S)-MTPA derivatives of both the natural alkaloid 2 and synthetic (2S, 12'R)-2 were prepared using (R)-MTPA chloride (Scheme 1) and a ¹H NMR analysis clearly indicated that spectral data of $(\alpha S, 2S, 12'R, \alpha S)$ -16 are indistinguishable from those of the (S)-

MTPA derivative from the natural alkaloid 2 and the same derivatizing reagent [CH₃-C-12': (δ 1.18, J = 6.8 Hz), O-CH₂-C-1'': (δ 4.57, 1H, ddd, J = 11.3, 7.3, 5.5 Hz; δ 4.36, 1H m)]. On the other hand, the spectral data of (α S,2S,12'S, α S)-16 [CH₃-C-12': (δ 1.12, J = 6.8 Hz), O-CH₂-C-1'': (δ 4.57, 4.36)] derived from the synthetic sample (2S,12'S)-2 and (R)-MTPA chloride are different from those of the (S)-MTPA derivative from the natural alkaloid 2 (Scheme 2). Therefore, the absolute configuration of the natural alkaloid 2 at position C-12' could be assigned to be (12'R), as anticipated.⁵ To assign the absolute configuration of alkaloid 2 at position C-2, we prepared the (α R)-MTPA derivative, the enantiomer of (α S,2R,12'R, α S)-16, from synthetic (2S,12'S)-2, and (S)-MTPA chloride. The ¹H NMR spectrum of (α R,2S,12'S, α R)-16 [CH₃-C-12': (δ 1.18, J = 6.8 Hz), O-CH₂-C-1'': (δ 4.50, 1H, dt, J = 11.1, 6.7 Hz; δ 4.34, 1H, dt, J = 11.0, 6.7 Hz)], which must show identical ¹H NMR data to those of its enantiomer (α S,2R,12'R, α S)-16, does not match in the δ 4.30-4.60 (position C-2'') to that of (α S)-MTPA derivative from the natural alkaloid 2. In this way, the absolute stereochemistry of natural alkaloid 2 was shown to be (2S,12'R)-2. This conclusion is supported by specific rotation values {synthetic (2S,12'R)-2: [α]²²_D+37.5°, c 0.64, CDCl₃; natural alkaloid 2: [α]²²_D+38.8°, c 0.18, CDCl₃}.⁵

In summary, the *Epilachna* alkaloids (2S, 12'R)-1 and (2S, 12'R)-2, along with their non-natural diastereomers, (2S, 12'S)-1 and (2S, 12'S)-2, were synthesized, and the absolute configurations of the naturally occurring 1 and 2 were unambiguously assigned as (2S, 12'R).

ACKNOWLEDGMENT: This research was supported in part by NIH grants AI 12020 and GM 53830.

REFERENCES AND NOTES

- 1. Paper no. 149 in the series "Defense Mechanisms of Arthropods." Paper no. 148 is Eisner, T. et al., Proc. Natl. Acad. Sci. U.S.A. in press.
- (a) Shi, X.; Attygalle, A. B.; Meinwald, J.; Houck, M. A.; Eisner, T. *Tetrahedron* 1995, 51, 8711-8718. (b) McCormick, K. D.; Attygalle, A. B.; Xu, S. C.; Meinwald, J.; Houck, M. A.; Blankespoor, C. L.; Eisner, T. *Tetrahedron* 1994, 50, 2365-2372. (c) Glisan King, A.; Meinwald, J. J. Chem. Rev. 1996, 96, 1105-1122. (d) Daloze, D.; Braekman, J. C.; Pasteels, J. M. Chemoecology 1995, 173-183.
- 3. Attygalle, A. B.; Xu, S.-C.; McComick, K. D.; Meinwald, J.; Blankespoor, C. L.; Eisner, T. Tetrahedron 1993, 49, 9333-9342.
- 4. Proksch, P.; Witte, L.; Wrag, V.; Hartmann, T. Entomol. Gener. 1993, 18, 1-7.
- 5. Shi, X.; Attygalle, A. B.; Xu, S.-C.; Ahmad, V. U.; Meinwald, J. Tetrahedron 1996, 52, 6859-6868.
- 6. Tarbell, D. S.; Yamamoto, Y.; Pope, B. M. Proc. Natl. Acad. Sci., U.S.A. 1972, 69, 730-732.
- 7. Mori, S.; Ohno, T.; Harada, H.; Aoyama, T.; Shioiri, T. Tetrahedron 1991, 47, 5051-5069.
- 8. Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 2173-2176.
- 9. Shi, X.; Webster, F. X.; Meinwald, J. Tetrahedron Lett. 1995, 36, 7201-7204.
- 10. Hills, L. R.; Ronald, R. C. J. Org. Chem. 1981, 46, 3348-3349.
- 11. Guillerm, D.; Linstrumelle, G. Tetrahedron Lett. 1986, 27, 5857-5860.
- 12. (a) Fabiano, E.; Golding, B. T.; Sadeghi, M. M. Synthesis, 1987, 190-192. (b) Taber, D. F.; Deker, P. B.; Fales, H. M.; Jones, T. H.; Lloyd, H. A. J. Org. Chem. 1988, 53, 2968-2971.
- 13. Stahl, G. L.; Walter, R.; Smith, C. W. J. Org. Chem. 1978, 43, 2285-2286.
- 14. Hsu, C.-T.; Wang, N.-Y.; Latiner, L. H.; Sih, C. J. J. Am. Chem. Soc. 1983, 105, 593-601.
- 15. (a) Mitsunobu, O. Synthesis 1981, 1-28. (b) Hughes, D. L. The Mitsunobu Reaction. In Organic Reactions; Paquette. L. A. Ed.; John Wiley and Sons, Inc.: New York, 1992; pp. 335-656.