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Abstract: Syntheses of (2S, 12' R)-2-( 12' -aminotridecyl)-pyrrolidine ( 1 ) and (2S, 12' R)- I -(2' '-hydroxyethyl)-2-(l 2' - 

aminotridecyl)-pyrrolidine (2), two defensive alkaloids recently isolated from the Mexican bean beetle, Epilachna 

varivestis, are described. By a comparison of IH NMR data of MTPA derivatives of natural alkaloid 2 with those of 

the synthetic standard, we confirm the (2S,12'R) configuration previously suggested for this alkaloid. Further support 

of these assignments was provided by the synthesis and J H NMR investigation of (2S,12'S)-1, (2S, 12'S)-2, and their 

MTPA derivatives. © 1997 Published by Elsevier Science Ltd. 

The hemolymph of  ladybird beetles (Coleoptera, Coccinellidae) often contains a highly diverse set of  

alkaloids which protect these insects from predators. 2 Recently, our group characterized two alkaloids, 2-(12'- 

aminotfidecyl)-pyrrolidine (1) and 1-(2"-hydroxyethyl)- 2-(12'-aminotridecyl)-pyrrolidine (2), from the 
3 

Mexican bean beetle, Epilachna varivestis. Proksch et al. also showed the presence of  2, along with other 

alkaloids, in all four life stages of  this beetle. 4 To determine the stereochemistry of  1, we synthesized a 

diastereomeric mixture of  (2R, I 2'R)- 1 and (2R, 12'S)-1 and assigned the (2S, 12'R) configuration to the natural 

alkaloid 1 by a comparison of  ~H NMR data of  the MTPA diamide of  the natural alkaloid I with those of  the 

synthetic material. 5 Since 2 is structurally very similar to 1, we anticipated that 2 should have the same 

stereochemistry. We now describe syntheses of  two pairs of  diastereomers, (2S,12"R)-1 and (2S,12'S)-1, (2S, 

12'R)-2 and (2S,12'S)-2, and confirm the (2S,12'R) configuration for both natural alkaloids by 1H NMR 

comparison of  their MTPA derivatives with those of  these synthetic samples. 

I ~ 12' 
H OH 

1 2 

Our synthetic strategy for (2S,12'R)-1 and (2S,12'R)-2 featured a coupling o f  two chiral moieties to a 

linear ct,c0-diyne chain at two termini. As shown in Scheme 1, chiral vinylic bromide (R)-6 was prepared from 

(R)-2-pyrrolidinoi (3) in three steps: protection of  the amino group with Boc20, 6 oxidation with Py.SO37 and a 

Wittig couplingfl To obtain the other chiral moiety, (S)-methyl lactate (7) was reduced with LiAIH4 and the 

primary alcohol group of  the product was tosylated to give 8. 9 Treatment of  8 with KOH afforded the volatile 
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epoxide 9 in high optical purity. 10 A selective opening of  the epoxide ring with 1,7-oetadiynyl lithium gave 

the desired diynol 10 in 71% yield. A palladium-catalyzed coupling of the vinyl bromide (6) to (S)-10 

provided the backbone of the target alkaloids, n This rather unstable intermediate, without isolation, was 

hydrogenaled immediately over Pd/C, to give the saturated pyrrolidinol (25,12"S)-11 in 49 % overall yield. 

The conversion of  the 12'S-hydroxyl group of (2S,12"S)-I1 into an azide to give (2S,12"R)-12 was 

accomplished with N3-/DEAD. 12 Removal of  the Boc group with HCI/EtOAe provided the pyrrolidine 

(2S,12'R)-13 quantitatively, 13 which was subsequently reduced with LiAIH4 to the desired alkaloid (2S,12'R)- 

1 in 69% yield. For the synthesis of (2S,12'R)-2, (2S,12'R)-13 was acylated with BnOCH2COCI to give the 

amide (2S,12'R)-14 in 89% yield. The treatment of (2S,12'R)-14 with LiAIH4 not only reduced the azide 

moiety to the corresponding amine and the earbonyl group to a methylene group, but also unexpectedly 

removed the protecting group to some extent, providing the final product (2S,12"R)-2 along with the 

undeproteeted intermediate. Finally, this mixture was subjected to hydrogenolysis over Pd/C to yield 

(2S,12'R)-2 in 77% overall yield. 
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Scheme 1. (a) (t-BuOCO)20, CH2CIz, 0 °C, 0.5 h, then 25 °C, 12 h; Co) Py.SOs, DMSO, TEA, -10 to 15 °C, 15 rain; (c) 
PhsPCH2Br2/NaN(TMS)2; THF/PhCH3/HMPA, -78 °C to 25 °C, 1 h; (d) LiAIH4, THF, 25 °C, 1 h; (e) TsCi, TEA, CH2CIz, -15 °C, 
20 h; (f) KOH, H20, 3 h; (g) n-BuLi/1,7-oemdiyne, LizCuC14, THF/I-IMPA, -20 °C, 12 h; (11) 6, Pd(Ph)4, Cul, nsBUNHz, ~ 25 °C 
12 h; (i) H2/Pd 10% on carbon, THF, 48 h; (j) DEAD, P(Ph)a, (Ph)2PON3, THF, 25 °C, 24 h; (k) HCI, EtOA¢, 25 °C, 0.5 h; (1) 
KOH/H20, ether, 25 °C; (m) LiAIH4, THF, 25 °C, 1 h; (n) BnOCH2COCI, TEA, CH2C12, 0*C, 12 h; (o) LiAII-I4, THF, 50 °C, 12 h; 
(13) H2/Pd 10% on carbon, 1 h; (q) (R)-Mosher chloride, pyridine, CH2Clz, -20°C, 12 h. 
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The corresponding diastereome~ (2S,12'S)-1 and (28,12'S)-2, were prepared as outlined in Scheme 2. 

Tim inveal~ product (2S, 12"R)-II was obtained from (2S,12"S)-11 by a Mitsanobu reaction with 

DEAD/Cd-Is(X~H followed by alkaline hydrolysis. 14:s The subsequent synthetic procedures were similar to 

those described for (2S,12"R)-1 and (2S,12"R)-2. 

"° ~ "°",,, 
! ! 
Boc (2S,12'S)-11 l~oc ~ -  (2S,12'R)-17: R = Bz 

95%[..~ (2S,12'R)-II: R = H 
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• -. (a) DEAD, PIbP, C.~sCO2H, THF, -50 °C, 0.5 k, then 25 °C, 2h; Co) KOH, MeOl-l, 25 °C, 12 h; (c) DEAD, PhsP, 
(PhhPON3, THF, 25 °C, 24 h; (d) HCI, F_.tOAc, 25 °C, 0.5 h; (e) KOH/H20, ether, 25 °C; (0 LiAII~, THF, 25 °C, 1 h; (g) 
BnOCHzCOCI, TEA, CH~/CI2, 0°(2, 12 h; (h) LiAll-14, THF, 50 °C, 12 h; (i) H2/Pd, 10% on carbon, ! h; (j) (R)-Mosher chloride, 
pyridine, CH2Ch, -20°C, 12 h. 

As reported previously, ~ the four stereoisomers of I can be distinguished by IH NMR analysis after 

attaching an MTPA moiety onto both the primary and secondary amino groups of  1. Accordingly, the (S)- 

MTPA diamide ofthe synthetic (2S,12'R)-1 [namely (¢zS,2S,12'R,oA')-IS], was prepared using (R)-ct-methoxy- 

a-(triflnoromethyl)phenylacetyl chloride [(R)-MTPA chloride] (Scheme 1). IH NMR (500 MHz) analysis of 

this de~vative showed that the spectral d_at~ of  (o.S,2S,12"R,oA~-I5 arc congruent with those of  (S)-MTPA 

diamide derived fzom the natural alkaloid I. In contrast, IH NMR data_ of  the (S)-MTPA derivative 

(o~,2S,12"S, oA')-I5 prepared from (2S, 12'S)-1 (Scheme 2) showed a signal at 8 1.12 for the C-13' methyl 

doublet, clearly distinguishable from the corresponding peak at 6 l a g  in the spectrum of the (S)-MTPA 

dexivative ~ from the natural alkaloid 1. Since neither (2R,12"S)-I nor (2R,12'R)-I is identical with the 

natural isomer, the absolute configuration of the natural alkaloid I was unambiguously established to be 

(2S,12'R), confirminE our previous assignment s This assignment is also consistent with the observed specific 

rotations {synthetic (2S,12"R)-I: [c~]Z2D + 9.8 °, C 0.25, C DCI3; natural alkaloid 1: [0t]~D + 9.3 °, C 0.15, 

CDCI3}: 
Since no apparent interaction was observed between the two chiral centers of  alkaloid I or its MTPA 

dexivatives s, we hypo&~'iz~ that there is also no significant mutual influence between the two chiral 

terminal moieties of  alkaloid 2 or its MTPA derivatives as well. The (S)-MTPA derivatives of  both the natural 

alkaloid 2 and synthetic (2S,12"R)-2 were prepared using (R)-MTPA chloride (Scheme 1) and a IH NMR 

analysis clearly indicated that spectral data of (¢xS,2S,12"R,cxS)-I6 are indistinguishable from those of  the (S)- 
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MTPA derivative from the natural alkaloid 2 and the same derivatizing reagent [CH3-C-12' : (5 1.18, J= 6.8 

Hz), O-CH2-C-I": (5 4.57, IH, ddd, J = 11.3, 7.3, 5.5 Hz; 5 4.36, 1H m)]. On the other hand, the spectral data 

of (¢xS,2S,12' S,¢xS)-I6 [CH3-C-12': (5 1.12, J = 6.8 Hz), O-CH2-C-I": (5 4.57, 4.36)] derived from the 

synthetic sample (2S, 12'S)-2 and (R)-MTPA chloride are different from those of the (S)-MTPA derivative 

from the natural alkaloid 2 (Scheme 2). Therefore, the absolute configuration of the natural alkaloid 2 at 

position C-12' could be assigned to be (12'R), as anticipated. 5 To assign the absolute configuration of 

alkaloid 2 at position C-2, we prepared the (cxR)-MTPA derivative, the enantiomer of(cxS,2R,12"R,ckS)-16, 

from synthetic (2S,12'S)-2, and (S)-MTPA chloride. The IH NMR spectrum of (¢xR,2S,12' S,o.R)-I6 [CH3-C- 

12': (51.18, J= 6.8 Hz), O-CH2-C-I": (8 4.50, 1H, dt, d = 11.1, 6.7 Hz; 5 4.34, IH, dt, J= 11.0, 6.7 Hz)], 

which must show identical IH NMR data to those of its enantiomer (aS,2R,12'R,cxS)-16, does not match in the 

5 4.30-4.60 (position C-2' ') to that of (¢xS)-MTPA derivative from the natural 2. These results revealed that 

(otS,2R,12'R,aS)-I6 is in fact the C-2 epimer of the (¢xS)-MTPA derivative from the natural alkaloid 2. In this 

way, the absolute stereochemistry of natural alkaloid 2 was shown to be (2S,12'R)-2. This conclusion is 

supported by specific rotation values {synthetic (2S,12"R)-2: [ct]22D +37.5 °, C 0.64, CDCI3, natural alkaloid 2: 

[ct]22D +38.8 °, C 0.18, CDCi3}. 5 

In summary, the Epilachna alkaloids (2S,12'R)-I and (2S,12' R)-2, along with their non-natural 

diastereomers, (2S,12'S)-1 and (2S,12'S)-2, were synthesized, and the absolute configurations of  the naturally 

occurring I and 2 were unambiguously assigned as (2S,12'R). 
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