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Short racemic syntheses of calvine and epicalvine
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Abstract

The intramolecular Pd(II)-catalysed carbonylation of aminoalkenitol was used as a key step in the short racemic syntheses of the
ladybird beetle alkaloids calvine and epicalvine. The title compounds have been prepared in 26% overall yield over four steps starting
from hexanal and pentenyl bromide.
� 2007 Elsevier Ltd. All rights reserved.
(+)-Calvine 1 and (+)-2-epicalvine 2 are bicyclic piper-
idine alkaloids found1 in the haemolymph of the ladybird
beetles Calvia 10-guttata and Calvia 14-guttata (Coccinel-
lidae) (Fig. 1).

When molested or disturbed, beetles release small drop-
lets of yellow ‘blood’ containing a toxic chemical cocktail
at their knee joints (reflex bleeding).2 As these insects are
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Fig. 1. Alkaloids isolated from ladybird beetles.
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rarely eaten by predators, it is thought that both alkaloids
function as efficient repellents.3

The relative configuration of (+)-calvine 1 and (+)-2-
epicalvine 2 was established on the basis of NMR and
HRMS studies, and subsequently confirmed via racemic
total synthesis.1 The absolute configuration of both lac-
tones was determined by enantioselective total syntheses,4

since only one other preparation of 1 has appeared5 along
with two formal syntheses.6,7

Herein, we report a short racemic syntheses of the alkal-
oids calvine rac-1 and epicalvine rac-2 featuring Pd(II)-
catalysed aminocyclisation–lactonisation8 as a key step.
Our retrosynthetic analysis led to the aminoalkenitol 3 as
the key substrate, which is easily accessible from secondary
alcohol 4 (Scheme 1).
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The total synthesis of rac-1 and rac-2 started with the
Grignard addition of pentenylmagnesium bromide to hex-
anal, furnishing undec-1-en-6-ol9 4 in 67% yield along with
undesired undec-1-en-6-one 510 (16%). Reduction of 5 with
NaBH4 provided the desired alcohol 4 in 77% yield, leading
to a combined overall yield of 80%. Activation of the
hydroxyl group of 4 using TsCl gave tosylate11 6 in 79%
yield. Finally, the treatment of 6 with excess ethanolamine
gave the desired aminoalkenitol12 3 in 47% total yield over
three steps13 (Scheme 2).

With substrate 3 in hand, we subjected it to the final key
transformation. The Pd(II)-catalysed aminocyclisation–
lactonisation14 was performed under various catalytic
Table 1
Pd(II)-catalysed aminocyclisation–lactonisation of 3

Entry Pd-salt (0.1 equiv) Reoxidant (2 equiv) Base

1a,b PdCl2 CuCl2 AcO
2b PdCl2 CuCl2 AcO
3 PdCl2 CuCl2 AcO
4 PdCl2(MeCN)2 CuCl2 AcO
5 Pd(OAc)2 CuCl2 AcO
6 Pd(TFA)2 CuCl2 AcO
7b Pd(OAc)2 Cu(OAc)2 AcO
8 PdCl2 CuBr2 AcO
9 PdCl2 CuCl2 K2C

10 Pd(OAc)2 CuCl2 Et3N
11d Pd(OAc)2 O2 Non
12 Pd(OAc)2 CuCl2 Et3N
13 Pd(OAc)2 CuCl2 Non

a Three equivalents of reoxidant and base were used.
b Complex mixture.
c Relative ratios were determined by the GC analyses of crude reaction mix
d Molecular sieves (3 Å) were added.
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Scheme 2. Preparation of substrate 3. Reagents and conditions: (i) Mg, Et2O,
(iii) 2 equiv TsCl, 19 equiv pyridine, CH2Cl2, 0 �C to rt, 18 h, 79%; (iv) 15 equ
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Scheme 3. Pd(II)-catalysed aminocyclisation–lactonisation of 3. Reagents an
AcONa, dioxane, 40 �C, 7 h, rac-1 + rac-2 (55%, 2.2:1), 7 (4%).
conditions in different solvents (Table 1). In all cases, we
obtained a diastereomeric mixture of the desired alkaloids
rac-1 and rac-2, often accompanied by oxazolidinone 7 as
a side-product.15 After some experimentation, we identified
the optimal catalytic system consisting of PdCl2 as catalyst,
excess CuCl2 and AcONa as reoxidant and base, respectively
(entry 3). These reaction conditions which involved heating
in dioxane under a CO atmosphere afforded racemic calvine
rac-1 and epicalvine rac-2 in 55% combined yield and in the
ratio 2.2:1 along with traces of 7 (Scheme 3). If necessary,
the undesired oxazolidinone 7 could be converted back to
aminoalkenitol 3 under basic conditions16 to recycle the
starting material.
(2 equiv) Solvent Conditions rac-1/rac-2/7c

Na AcOH 50 �C, 72 h 1.4/1.0/0
Na Et2O 40 �C, 24 h 1.1/1.0/0
Na Dioxane 40 �C, 7 h 9.0/4.0/1.0
Na MeCN 26 �C, 24 h 2.4/1.0/1.2
Na THF 28 �C, 24 h 1.8/1.0/3.6
Na THF 28 �C, 22 h 1.8/1.0/2.4
Na THF 50 �C, 72 h 1.0/1.6/0
Na THF 29 �C, 21 h 1.0/1.1/1.9
O3 Dioxane 30 �C, 5 h 16.0/16.3/1.0

Dioxane 40 �C, 24 h 2.6/1.0/1.8
e Dioxane 50 �C, 24 h 6.0/5.0/1.0

Toluene 33 �C, 20 h 1.5/1.0/2.1
e Toluene 40 �C, 24 h 2.3/2.0/1.0
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rt–reflux, 2 h, 5 (16%) + 4 (67%); (ii) NaBH4, MeOH, 0 �C, 30 min, 77%;
iv H2N(CH2)2OH, THF, reflux, 48 h, 75%.
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Scheme 4. Proposed mechanisms for the Pd(II)-catalysed aminocyclisation–lactonisation of 3 and formation of products rac-1, rac-2 and 7.
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Mechanistically, the intramolecular aminocarbonylation
of 3 proceeds most likely via an initially formed r-palla-
dium complex I that quickly accepts carbon monoxide to
produce the corresponding r-acylpalladium complex II.
This intermediate finally undergoes reductive elimination
to furnish products rac-1 and rac-2. Alternatively, the
formation of palladium alkoxide III cannot be excluded,
which after CO insertion and intramolecular nucleophilic
addition (or vice versa) may form the bicyclic intermediate
IV. The final reductive elimination would again lead to the
observed products rac-1 and rac-2. The formation of unde-
sired oxazolidinone 7 can result from alkoxide III. Once
formed, III may intercept CO to generate an acyclic r-acyl-
palladium complex V. If this is the case, the reductive elim-
ination via VI occurs much more quickly than bicyclisation
finally leading to undesired oxazolidinone 7 (Scheme 4).

In conclusion, we have used a Pd(II)-catalysed amino-
cyclisation–lactonisation of 3 as a key step in the short
racemic total synthesis of the alkaloids calvine rac-1 and
epicalvine rac-2. The title compounds were obtained in
26% overall yield over four steps.
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