Short racemic syntheses of calvine and epicalvine

Peter Szolcsányi ${ }^{\text {a,* }}$, Tibor Gracza ${ }^{\text {a }}$, Ivan Špánik ${ }^{\text {b }}$
${ }^{a}$ Department of Organic Chemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
${ }^{\mathrm{b}}$ Department of Analytical Chemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia

Received 15 October 2007; revised 12 December 2007; accepted 18 December 2007
Available online 14 January 2008

Abstract

The intramolecular $\mathrm{Pd}(\mathrm{II})$-catalysed carbonylation of aminoalkenitol was used as a key step in the short racemic syntheses of the ladybird beetle alkaloids calvine and epicalvine. The title compounds have been prepared in 26% overall yield over four steps starting from hexanal and pentenyl bromide.

© 2007 Elsevier Ltd. All rights reserved.
$(+)$-Calvine $\mathbf{1}$ and (+)-2-epicalvine 2 are bicyclic piperidine alkaloids found ${ }^{1}$ in the haemolymph of the ladybird beetles Calvia 10-guttata and Calvia 14-guttata (Coccinellidae) (Fig. 1).

When molested or disturbed, beetles release small droplets of yellow 'blood' containing a toxic chemical cocktail at their knee joints (reflex bleeding). ${ }^{2}$ As these insects are

(+)-calvine

(+)-2-epicalvine

Fig. 1. Alkaloids isolated from ladybird beetles.
rarely eaten by predators, it is thought that both alkaloids function as efficient repellents. ${ }^{3}$

The relative configuration of $(+)$-calvine 1 and $(+)-2-$ epicalvine 2 was established on the basis of NMR and HRMS studies, and subsequently confirmed via racemic total synthesis. ${ }^{1}$ The absolute configuration of both lactones was determined by enantioselective total syntheses, ${ }^{4}$ since only one other preparation of $\mathbf{1}$ has appeared ${ }^{5}$ along with two formal syntheses. ${ }^{6,7}$

Herein, we report a short racemic syntheses of the alkaloids calvine rac-1 and epicalvine rac-2 featuring $\mathrm{Pd}(\mathrm{II})-$ catalysed aminocyclisation-lactonisation ${ }^{8}$ as a key step. Our retrosynthetic analysis led to the aminoalkenitol 3 as the key substrate, which is easily accessible from secondary alcohol 4 (Scheme 1).

Scheme 1. Retrosynthetic analysis of rac-1 and rac-2.

[^0]The total synthesis of rac- $\mathbf{1}$ and rac-2 started with the Grignard addition of pentenylmagnesium bromide to hexanal, furnishing undec-1-en-6-ol ${ }^{9} 4$ in 67% yield along with undesired undec-1-en-6-one $5^{10}(16 \%)$. Reduction of 5 with NaBH_{4} provided the desired alcohol 4 in 77% yield, leading to a combined overall yield of 80%. Activation of the hydroxyl group of $\mathbf{4}$ using TsCl gave tosylate ${ }^{11} \mathbf{6}$ in 79% yield. Finally, the treatment of $\mathbf{6}$ with excess ethanolamine gave the desired aminoalkenitol ${ }^{12} 3$ in 47% total yield over three steps ${ }^{13}$ (Scheme 2).

With substrate 3 in hand, we subjected it to the final key transformation. The $\operatorname{Pd}(\mathrm{II})$-catalysed aminocyclisationlactonisation ${ }^{14}$ was performed under various catalytic
conditions in different solvents (Table 1). In all cases, we obtained a diastereomeric mixture of the desired alkaloids rac-1 and rac-2, often accompanied by oxazolidinone 7 as a side-product. ${ }^{15}$ After some experimentation, we identified the optimal catalytic system consisting of PdCl_{2} as catalyst, excess CuCl_{2} and AcONa as reoxidant and base, respectively (entry 3). These reaction conditions which involved heating in dioxane under a CO atmosphere afforded racemic calvine rac-1 and epicalvine rac-2 in 55\% combined yield and in the ratio $2.2: 1$ along with traces of 7 (Scheme 3). If necessary, the undesired oxazolidinone 7 could be converted back to aminoalkenitol 3 under basic conditions ${ }^{16}$ to recycle the starting material.

Scheme 2. Preparation of substrate 3. Reagents and conditions: (i) $\mathbf{M g}, \mathrm{Et}_{2} \mathrm{O}$, rt-reflux, $2 \mathrm{~h}, \mathbf{5}(16 \%)+\mathbf{4}(67 \%)$; (ii) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 77 \%$; (iii) 2 equiv $\mathrm{TsCl}, 19$ equiv pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, $18 \mathrm{~h}, 79 \%$; (iv) 15 equiv $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$, THF, reflux, $48 \mathrm{~h}, 75 \%$.

Table 1
$\operatorname{Pd}(\mathrm{II})$-catalysed aminocyclisation-lactonisation of 3

Entry	Pd-salt (0.1 equiv)	Reoxidant (2 equiv)	Base (2 equiv)	Solvent	Conditions	$\mathrm{rac}-1 / \mathrm{rac}-2 / 7^{\text {c }}$
$1^{\text {a,b }}$	PdCl_{2}	CuCl_{2}	AcONa	AcOH	$50^{\circ} \mathrm{C}, 72 \mathrm{~h}$	1.4/1.0/0
$2^{\text {b }}$	PdCl_{2}	CuCl_{2}	AcONa	$\mathrm{Et}_{2} \mathrm{O}$	$40^{\circ} \mathrm{C}, 24 \mathrm{~h}$	1.1/1.0/0
3	PdCl_{2}	CuCl_{2}	AcONa	Dioxane	$40^{\circ} \mathrm{C}, 7 \mathrm{~h}$	9.0/4.0/1.0
4	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$	CuCl_{2}	AcONa	MeCN	$26^{\circ} \mathrm{C}, 24 \mathrm{~h}$	2.4/1.0/1.2
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	CuCl_{2}	AcONa	THF	$28^{\circ} \mathrm{C}, 24 \mathrm{~h}$	1.8/1.0/3.6
6	$\mathrm{Pd}(\mathrm{TFA})_{2}$	CuCl_{2}	AcONa	THF	$28^{\circ} \mathrm{C}, 22 \mathrm{~h}$	1.8/1.0/2.4
$7{ }^{\text {b }}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}$	AcONa	THF	$50^{\circ} \mathrm{C}, 72 \mathrm{~h}$	1.0/1.6/0
8	PdCl_{2}	CuBr_{2}	AcONa	THF	$29^{\circ} \mathrm{C}, 21 \mathrm{~h}$	1.0/1.1/1.9
9	PdCl_{2}	CuCl_{2}	$\mathrm{K}_{2} \mathrm{CO}_{3}$	Dioxane	$30^{\circ} \mathrm{C}, 5 \mathrm{~h}$	16.0/16.3/1.0
10	$\mathrm{Pd}(\mathrm{OAc})_{2}$	CuCl_{2}	$\mathrm{Et}_{3} \mathrm{~N}$	Dioxane	$40^{\circ} \mathrm{C}, 24 \mathrm{~h}$	2.6/1.0/1.8
$11^{\text {d }}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	O_{2}	None	Dioxane	$50^{\circ} \mathrm{C}, 24 \mathrm{~h}$	6.0/5.0/1.0
12	$\mathrm{Pd}(\mathrm{OAc})_{2}$	CuCl_{2}	$\mathrm{Et}_{3} \mathrm{~N}$	Toluene	$33^{\circ} \mathrm{C}, 20 \mathrm{~h}$	1.5/1.0/2.1
13	$\mathrm{Pd}(\mathrm{OAc})_{2}$	CuCl_{2}	None	Toluene	$40^{\circ} \mathrm{C}, 24 \mathrm{~h}$	2.3/2.0/1.0

${ }^{\text {a }}$ Three equivalents of reoxidant and base were used.
${ }^{\mathrm{b}}$ Complex mixture.
${ }^{\text {c }}$ Relative ratios were determined by the GC analyses of crude reaction mixtures.
${ }^{d}$ Molecular sieves ($3 \AA$) were added.

Scheme 3. $\mathrm{Pd}(\mathrm{II})$-catalysed aminocyclisation-lactonisation of 3. Reagents and conditions: (i) CO (balloon), 0.1 equiv $\mathrm{PdCl}_{2}, 2$ equiv $\mathrm{CuCl}_{2}, 2$ equiv AcONa , dioxane, $40^{\circ} \mathrm{C}, 7 \mathrm{~h}, \mathrm{rac}-\mathbf{1}+\mathrm{rac}-2(55 \%, 2.2: 1), 7(4 \%)$.

rac-1 (cis) rac-2 (trans)

Scheme 4. Proposed mechanisms for the Pd(II)-catalysed aminocyclisation-lactonisation of $\mathbf{3}$ and formation of products rac-1, rac-2 and $\mathbf{7}$.

Mechanistically, the intramolecular aminocarbonylation of $\mathbf{3}$ proceeds most likely via an initially formed σ-palladium complex I that quickly accepts carbon monoxide to produce the corresponding σ-acylpalladium complex II. This intermediate finally undergoes reductive elimination to furnish products rac-1 and rac-2. Alternatively, the formation of palladium alkoxide III cannot be excluded, which after CO insertion and intramolecular nucleophilic addition (or vice versa) may form the bicyclic intermediate IV. The final reductive elimination would again lead to the observed products rac-1 and rac-2. The formation of undesired oxazolidinone 7 can result from alkoxide III. Once formed, III may intercept CO to generate an acyclic σ-acylpalladium complex \mathbf{V}. If this is the case, the reductive elimination via VI occurs much more quickly than bicyclisation finally leading to undesired oxazolidinone 7 (Scheme 4).

In conclusion, we have used a $\mathrm{Pd}(\mathrm{II})$-catalysed amino-cyclisation-lactonisation of $\mathbf{3}$ as a key step in the short racemic total synthesis of the alkaloids calvine rac-1 and epicalvine rac-2. The title compounds were obtained in 26% overall yield over four steps.

Acknowledgements

We thank Professor František Považanec for helpful discussions. We are grateful to Mrs. Mária Krajčirová for technical assistance, to Dr. Naďa Prónayová for NMR service and to Dr. Peter Zálupský for performing
the preliminary quantum-chemical calculations as well as the manuscript proofreading. This work was supported by Science and Technology Assistance Agency under the Contract No. APVT-20-000904 and Slovak National R\&D Programme No. 2003SP200280203.

References and notes

1. Braekman, J.-C.; Charlier, A.; Daloze, D.; Heilporn, S.; Pasteels, J.; Plasman, V.; Wang, S. Eur. J. Org. Chem. 1999, 1749-1755.
2. Happ, G. M.; Eisner, T. Science 1961, 134, 329-331.
3. Laurent, P.; Braekman, J.-C.; Daloze, D.; Pasteels, J. Eur. J. Org. Chem. 2003, 2733-2743.
4. Laurent, P.; Braekman, J.-C.; Daloze, D. Eur. J. Org. Chem. 2000, 2057-2062.
5. Dewi-Wülfling, P.; Gebauer, J.; Blechert, S. Synlett 2006, 487489.
6. Rougnon-Glasson, S.; Tratrat, Ch.; Canet, J.-L.; Chalard, P.; Troin, Y. Tetrahedron: Asymmetry 2004, 15, 1561-1567.
7. Calvet-Vitale, S.; Vanucci-Bacqué, C.; Fargeau-Bellassoued, M.-C.; Lhommet, G. Tetrahedron 2005, 61, 7774-7782.
8. Tamaru, Y.; Kobayashi, T.; Kawamura, S.-I.; Ochiai, H.; Yoshida, Z.-I. Tetrahedron Lett. 1985, 26, 4479-4482; Tamaru, Y.; Hojo, M.; Yoshida, Z.-I. J. Org. Chem. 1988, 53, 5731-5741; Jäger, V.; Hümmer, W. Angew. Chem., Int. Ed. Engl. 1990, 29, 1171-1173; Hümmer, W.; Dubois, E.; Gracza, T.; Jäger, V. Synthesis 1997, 634 642; Tamaru, Y.; Kimura, M. Synlett 1997, 749-757; Szolcsányi, P.; Gracza, T.; Koman, M.; Prónayová, N.; Liptaj, T. Tetrahedron: Asymmetry 2000, 11, 2579-2597.
9. Compound $\mathbf{4}$ is known in optically pure form as the (S)-enantiomer: (a) Fürstner, A.; Müller, T. J. Org. Chem. 1998, 63, 424-425; (b) Fürstner, A.; Müller, T. J. Am. Chem. Soc. 1999, 121, 7814-7821.
10. (a) Bunce, R. A.; Herron, D. M.; Lewis, J. R.; Kotturi, S. W. J. Heterocycl. Chem. 2003, 40, 113-120. Formation of undesired ketone 5 could be explained by a Meerwein-Ponndorf-Verley-type mechanism, see: (b) Kovalev, B. G.; Chusid, A. Ch.; Konyuchov, V. P.; Nedopekina, C. F.; Neymark, J. L. Zh. Org. Khim. 1975, 11, 11831187.
11. Selected data for toluene-4-sulfonic acid 1-pentyl-hex-5-enyl ester 6: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.82\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.19-1.44(\mathrm{~m}$, $\left.8 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}\right), 1.50-1.67$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-1^{\prime}$), 1.90-2.00 (m, 2H, H-4), $2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Ph}\right), 4.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 4.88-4.98(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-6), 5.69$ (ddt, $1 \mathrm{H}, \mathrm{H}-5), 7.32\left(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{CH}_{m}\right.$ - Ph), 7.79 $\left(\mathrm{d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{CH}_{o}-\mathrm{Ph}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.9$ $\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.6\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{Ph}\right), 22.4,23.8,24.3,31.4\left(4 \times t, \mathrm{C}-3, \mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}\right.$, C-4'), 33.2, 33.5, $34.0\left(3 \times t, \mathrm{C}-2, \mathrm{C}-4, \mathrm{C}^{\prime} 1^{\prime}\right), 84.3(\mathrm{~d}, \mathrm{C}-1), 114.8(\mathrm{t}$, C-6), $127.7\left(\mathrm{~d}, \mathrm{CH}_{o}-\mathrm{Ph}\right), 129.6\left(\mathrm{~d}, \mathrm{CH}_{m}-\mathrm{Ph}\right), 134.6\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{C}\right), 138.1$ (d, C-5), $144.3\left(\mathrm{~s}, \mathrm{CSO}_{2}\right)$. IR ($\mathrm{KBr}, v / \mathrm{cm}^{-1}$): 666, 815, 905, 1097, 1176, 1188, 1362, 2862, 2932, 2954.
12. Selected data for 2-(1-pentyl-hex-5-enylamino)-ethanol 3: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.87\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20-1.45(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}-2$, H-3, H-1 ${ }^{\prime}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime}{ }^{\prime}, \mathrm{H}-4^{\prime}$), 1.95-2.15 (m, 2H, H-4), 2.43 (br s, 2H, exchange with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}, \mathrm{OH}\right), 2.45-2.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 2.74(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NH}$), $3.60\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.90-5.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 5.79$ (ddt, $1 \mathrm{H}, \mathrm{H}-5) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(\mathrm{q}, \mathrm{CH}_{3}\right), 22.6,24.9$, $25.3,32.1,33.4,33.9,33.9\left(7 \times t, \mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-1^{\prime}, \mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}, \mathrm{C}-4^{\prime}\right)$, $48.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{NH}\right), 57.1(\mathrm{~d}, \mathrm{C}-1), 61.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{OH}\right), 114.5(\mathrm{t}, \mathrm{C}-6), 138.7$ (d, C-5). IR (KBr, v / cm^{-1}): 910, 1062, 1459, 1641, 2858, 2929, 3077, 3313.
13. An identical sequence on analogous compounds is reported, see: Fürstner, A.; Langemann, K. Synthesis 1997, 792-803.
14. Typical procedure for the intramolecular $\mathrm{Pd}(\mathrm{II})$-catalysed carbonylation: A mixture of aminoalkenitol $3(100 \mathrm{mg}, 0.469 \mathrm{mmol}), \mathrm{PdCl}_{2}$ ($8 \mathrm{mg}, 0.045 \mathrm{mmol}, 0.1$ equiv), CuCl_{2} ($126 \mathrm{mg}, 0.937 \mathrm{mmol}, 2$ equiv) and $\mathrm{AcONa}(77 \mathrm{mg}, 0.937 \mathrm{mmol}, 2$ equiv) in dry dioxane $(9 \mathrm{~mL})$ was stirred under a CO atmosphere (balloon) at $40^{\circ} \mathrm{C}$ for 7 h . The resulting suspension was filtered, the solids were washed with $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ and the filtrate was evaporated. The green residue was suspended in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and washed with 5% aq $\mathrm{NH}_{4} \mathrm{OH}$ $(2 \times 10 \mathrm{~mL})$. The combined washings were back-extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and the combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, dried over MgSO_{4} and evaporated to furnish a red-brown oil $(96 \mathrm{mg})$. Flash chromatography purification $\left(\mathrm{SiO}_{2}\right.$, hexanes/AcOEt/ $\mathrm{Et}_{3} \mathrm{~N}=86 / 14 / 1$) yielded three fractions: oxazolidinone 7 as a yellowish oil ($5 \mathrm{mg}, 4 \%$), calvine $\mathrm{rac}-1$ as a yellowish oil $(45 \mathrm{mg}, 38 \%)$ and epicalvine $\mathrm{rac}-2$ as a yellowish oil ($20 \mathrm{mg}, 17 \%$).
15. Selected data for 3-(1-pentyl-hex-5-enyl)-oxazolidin-2-one 7: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.86\left(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.20-$ $1.88\left(\mathrm{~m}, 12 \mathrm{H}, 7 \times \mathrm{CH}_{2}\right), 1.94-2.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.39(\mathrm{t}$, $\left.2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.70-3.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 4.31(\mathrm{t}, 2 \mathrm{H}$, $\left.J=8.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.92-5.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 5.76(\mathrm{ddt}, 1 \mathrm{H}, \mathrm{H}-5) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.0\left(\mathrm{q}, \mathrm{CH}_{3}\right), 22.6,25.4,25.9,31.6$, $31.8,32.5,33.4\left(7 \times t, 7 \times \mathrm{CH}_{2}\right), 39.5\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{~N}\right), 53.2(\mathrm{~d}, \mathrm{CH}), 61.9(\mathrm{t}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 115.0\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{CH}\right), 138.3\left(\mathrm{~d}, \mathrm{CH}_{2}=\mathrm{CH}\right), 158.5(\mathrm{~s}, \mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{2}$ (239.21): C, 70.25 ; H, 10.53; N, 5.85%. Found: C, $70.20 ; \mathrm{H}, 10.58 ; \mathrm{N}, 5.88 \%$. Preparation of N -substituted oxazolidinones via $\mathrm{Pd}(\mathrm{II})$-catalysed carbonylation of 1,2 -aminoalcohols is known: Tam, W. J. Org. Chem. 1986, 51, 2977-2981; Chiarotto, I.; Feroci, M. Tetrahedron Lett. 2001, 42, 3451-3453.
16. Katz, S. J.; Bergmeier, S. C. Tetrahedron Lett. 2002, 43, 557-559.

[^0]: * Corresponding author. Tel.: +421 2593251 62; fax: +421 252968560.

 E-mail address: peter.szolcsanyi@stuba.sk (P. Szolcsányi).

