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SUMMARY 

A simple evolutionary model of dormancy and dispersal is presented with 

special reference to phytophagous lady beetles. In order to investigate spatially 

heterogeneous environments, we assume the simplest patch structure, that is, there are 

only two patches, main and sub. Environments are also assumed to be temporally 

constant. The main patch is superior to the sub patch, but density effect at the main 

patch is higher than at the sub patch. Optimal dormancy and dispersal are obtained 

at the  same time by the method of evolutionarily stable strategy (ESS). In the 

univoltine life cycle, dormancy strategy vanishes because dormant individuals do not 

reproduce at all but suffer from a certain mortality rate during winter hibernation. In 

the bivoltine life cycle, the dormancy and dispersal rates constitute a trade-off: the 

rates change together with a negative correlation when the mortality rate during 

dispersal or during winter hibernation changes. When suitability of the main patch 

gradually deteriorates, the optimal strategy changes as follows: neither dormancy nor 

dispersal is adopted at the most suitable condition, the dispersal rate is increased 

without dormancy in the intermediate condition, and then the dormancy rate is 

increased with a constant dispersal rate. We discuss the field observation data of lady 

beetles in the light of results of our model. 

KEvWORgS: dormancy, dispersion, lady beetle, heterogeneous patches, stable environments, evolutionary 

model. 

INTRODUCTION 

Phytophagous 28-spotted lady beetles , Henosepilachna vigintioctopunculata complex, 

are comprised of H. vigintioctomaculata (Hvm, hereafter), H. vigintioctopunctata (Hvp, 
hereafter), H. niponica (Hn, hereafter) among others, and the host plants are cultivated 
potatoes and cultivated egg plants for Hvm and Hvp, and wild thistles for Hn. Hvp is 
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bivoltine, and Hvm and Hn are univoltine, and these species overwinter in the phase of 

adults (Nakamura, 1983). 

There are many insect species in which the number of individuals widely varies 

from year to year, as is typical in locusts. However, Hvp and Hn are almost constant 

in this respect. This stability is caused by density-dependent dispersal and density- 

dependent oviposition in Hvp and Hn (Nakamura and Ohgushi, 1979, 1981; Ohgushi 

and Sawada, 1985; Hirano, 1984). 

Nakamura (1976a) observed on bivoltine Hvp in the field that first generation 

adults may overwinter as well as the second generation adults. Nakamura (1976b) 

also reported in a cage experiment on the same species that there is a positive 

correlation between dormancy rates and densities of different cages. Ohgushi and 

Sawada (1985) found in Hn that females reabsorb their eggs under a high-density 

condition. Ito et al. (1990) suggested that dormant individuals which have reabsorbed 

their eggs may improve their survival rate during winter. Accordingly, we assume 

that the lady beetles can take two strategies to escape from locally unfavorable 

environments: dispersal to other patches for reproduction or dormancy with egg 

absorption. 

In general, either dormancy or dispersal can reduce a reproductive risk due to 

spatial and temporal variability of natural environments, and dispersal reduces 

selection for dormancy, while dormancy reduces selection for dispersal (Cohen and 

Levin, 1987). A central question here is what is the optimal combination of dispersion 

and dormancy (or how the dispersal and dormancy rates evolve) in a given 

heterogeneous environment. 

Models of dispersion and dormancy have been analyzed mainly as adaptation for 

spatially and temporally fluctuating environments (Levin et al., 1984; Ellener, 1985 a, 

b; Cohen and Levin, 1987, 1991). Hamilton and May (1977), however, showed that 

dispersal can evolve even when environments are completely constant. Sota (1988) 

also showed that partial bivoltism (i.e., a mixture of univoltine and bivoltine 

individuals) may evolve in a stable environment. Although almost all the models of 

dispersal have assumed that there are several equivalent patches, we treat a case where 

patches are not equivalent in order to make clear the effect of spatially heterogeneous 

environments. For simplicity, our model has only two patches: a superior main patch 

and an inferior sub patch. As the first step, we investigate here the case where 

environmental conditions are temporally constant. Temporally fluctuating environ- 

ments will be studied in another paper. 

ASSUMPTIONS AND ANALYSIS 

We model two types of lady beetles, univoltine and bivoltine. As we consider the 

population dynamics of only females, the number of individuals here means the 
number of females. 
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Univo l t ine  Case  

First,  we discuss univol t ines  (see Fig. 1). T h e  ma in  patch  is a ssumed  to be 

superior :  high survival  rate and  high fecundity.  But  the densi ty  effect is also assumed  

to be high.  M a n y  sub patches are assumed  to be located a r o u n d  the ma in  patch.  W e  

shall t reat  the sub patches as one n o n - m a i n  patch,  which is taken to be inferior:  low 

survival  rate and low fecundity.  But the densi ty  effect is low because there are m a n y  

inferior sub patches.  

All overwin te r ing  adults at a cer tain year  t(xt) come to the ma in  patch first. T h e y  

m a y  r ema in  at the m a i n  patch  or  disperse to the sub patch.  T h e  n u m b e r  of  

individuals  (d,) that  can reach the sub patch  is denoted  by  

dt = Dix, V ( 1 ) 

where  Di is a dispersal  rate to the sub patch  and  V a survival rate when  they  disperse. 

T h e  dispersed individuals  reproduce  the next  genera t ion  (qt) at the sub patch:  

s2F2d, 
q t=  ] +azF2dt (2) 

where  a is the coefficient of  densi ty  effect, s the survival rate f rom egg to adult ,  F the 

n u m b e r  o f  eggs per  female, and  the suffix "2" means  the sub patch.  

O n  the o ther  hand ,  individuals  that  r emain  at the ma in  patch,  i .e. ,  

y,  = ( 1 --  Di)x, (3) 

overwinterd adult 

x, I 
main patch ~, sub-patch 

remain ] disparsal I Yt = 11 "Di)X~ d t =  D/xtV ] 

V T Iov=too / 
wt = Doyt zt = ( l "Do)Yt 

reproductiOns1 F1 zt I 
Pt = l + a l F l Z t  

1 
1 

Xt + l =W( wt § +C/t ) 

reproduction I 
qt = $2 F2 dt 

1 +a2 F2 d t 

Fig. 1. Model assumptions in the univohine case. Patches are comprised of a main patch 
and a sub patch. D i and Do are dispersal rate and dormancy rate at the main patch, respec- 
tively. Here a is the coefficient of density effect, s survival rate from egg to adult, and Fthe 
number of eggs per female, and suffixes 1 and 2 mean the main and sub patches, respective- 
ly. Vand W are the survival rates during dispersal and overwintering, respectively. For 
the bivoltine case, one more reproduction process is added to the top of the figure. 
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may oviposit or enter dormancy without ovipositing. 

the number of individuals 

zt = ( 1 -- Do)yt 

reproduce the next generation (Pt) at the main patch. 

SlFlzt 
Pt= 1 + aaFlzt ' 

When Do is a dormancy rate, 

Namely, 

(4) 

(5) 

where a, s and F are the same as in Eq. (2) and the suffix "1" means the main patch. 

The number of individuals directly entering dormancy at the main patch is 

we=Doyt. (6) 

According to the assumption that the main patch is superior to the sub patch and has a 

more severe density-dependent effect, we put 

sl~s2, FieF2, and aa~a2. (7) 

The number of individuals in the next year (xt+l) is 

x,+ 1 = W(w  + p, + qe) (8) 

Here, Wis a survival rate during overwintering ( W <  1). We assume that iteration of 

Eqs. (1) through (8) makes xt reach a stationary value. 

There are three paths for individuals to choose, i.e., dispersing to the sub patch 

and reproduce, remaining at the main patch and reproduce, or remaining at the main 

patch and enter dormancy without reproduction. We will determine the optimal 

dispersal rate and the optimal dormancy rate at the same time by the method of the 

evolutionarily stable strategy (ESS) (Maynard Smith, 1982). We can analytically 

obtain the optimal values as follows. 

Let us assume that all individuals (wild type) take a dormancy rate, Do*, and a 

dispersal rate, Di*. From the assumption of "stationarity', the reproductive rate per 

year (Xt+l*/Xt*) becomes 1 in the population with Do* and Di*: 

r  xt+ ,___2 W(w*+p*+q*) 
xt* -- x* = 1. (9) 

Where, "*" represents the stationary value of the wild type. Applying Eqs. (1) 
through (6) to Eq. (9), we have 

SlFa } + Di, V 1 $2F2 W[(1--Di*){Do* +(1--Do*)1 +aaF, z* +a2F2d* ] =  1. (10) 

Suppose that a few mutants take a certain dormancy rate/)0, not equal to Do*, and 

a certain dispersal rate/)i ,  not equal to Di*. The reproductive rate per year of the 
mutants is 
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~=  w(~+p+O) 

where "^" represents the value of the mutants. 

the mutants, we obtain 

(11) 

Using again eqs. (1) through (6) for 

and 

Obo (Do=Do *, b;=Di*) =0 

and 

aq) ^ �9 
bbi (Do=Do , bi=Di*) =0 

^ 1~r ^ because (~ should take the highest value when Oi-~-Di and Do =Do*. 
satisfy the stationary condition in Eq. (10). 

From Eqs. (12), (13) and (14), we have 

~ = W(1--Di*)(1 slF1 )=0 
BDo 1 +-aaFlz* 

O~ W { slF, (1--Do*) s2F2V q_Do.} =0.  (16) 
~1)i -- 1 + alFlz * 1 + a2F2d* 

From Eq. (15), 

slF1 
1 -t-alFaz* = 1. (17) 

From Eqs. (10), (16) and (17), we get W = 1. This contradicts the assumption that 

W< 1. 

saF/(l+aaFlz*) in Eq. (17) is the stationary reproductive rate per capita at the 

main patch. Considering that the reproductive rate per year is exactly 1 in the 

stationary population, the reproductive rate per individual at the main patch should be 

grater than 1 because the overwintering survival rate (IV) is less than 1. Therefore, 

the value of Eq. (15) should be negative: 

(13) 

(14) 

Do* and Di* also 

(15) 

slF1 }+biv  s2 , ^ (12) 
l+alFl(Z*+~) l+a2F2(d +d) j" 

Note that the density effects on reproduction appear with the total densities z* +k  and 

d*+d. However, we can neglect k and d in the denominators in Eq. (12) as we 

assume that the numbers of mutants k and d are much smaller than z* and d*, 

respectively. 

When Do* and Di* are between 0 and 1, the necessary conditions for Do* and Di* 
to be ESS's are 
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a+ 
abo <0.  (18) 

This means that the optimal dormancy rate (D0*) is 0 in the univoltine case. 

z*=y*  from Eq. (4). 

From Eqs. (10) and (16) with D0*----0, we obtain 

Thus,  

W 
slF1 

1 +alFly* = 1 (19) 

and 

W s2F2 V 
1 +a2F2d* = 1. (20) 

Eqs.(19) and (20) mean that the reproductive rates per year through paths of the main 

and sub patches are equal to 1, respectively. The optimal dispersal rate (Di*), and the 

stationary numbers of the remaining individuals (y*) and dispersal individuals (d*/V) 
are 

d*/V 
Oi*-- y* + d*/V'  (21) 

y , _  saFa W-- 1 
alF1 (22) 

and 

d * / V -  s2F2 W V -  1 
a2F2 V ' (23) 

respectively. From these equations, we can see that the optimal dispersal rate (Di*) 
becomes large when V is large, the main patch is inferior (larger al, smaller F1 or 

smaller sl), the sub patch is superior (smaller a2, larger F2 or larger s2), or else W is 
large since slFl >s2F2V (see Eq. (7)). 

Bivoltine Case 

All overwintering adults in a certain year t(ut) reproduce the first generation (xt): 

$oFout 
x,-- 1 +aoFout ' (24) 

where a, s and F are the same definitions as in Eq. (2) and the suffix "0" means the first 

generation. In the first reproduction, we assume that the main patch is so suitable 

that individuals need neither to disperse to the sub patch nor to enter dormancy. 

After this reproduction, females of the first generation take the same paths as 
univoltines (refer to Fig. 1). 
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In this case, the reproductive rate per year of wild type individuals is 

~ , =  x*t+_______~l u*t+l x*t+a _ soFo W(w*+p*+q*)  = 1. (25) 
x*t -- x*t u*t+a l+aoFou* 

On the other hand, the reproductive rate per year of mutants is one that is Eq. (12) 

multiplied by s0F0/(1 +aoFou*). Applying Eqs. (13) and (14) for this modified mutant 

fitness, and using Eq. (25), we can reduce the following relations in the stationary 

population of individuals adopting ESS's satisfying 0 < Di* < 1 and 0 < Do* < 1. 

soFo 
W 1 +aoFou* = 1, (26) 

slFa (27) 
1 +alFlz *'= 1 

and 

s2F2 
V 1 +a2F2d* = 1. (28) 

Eq. (26) means that the overwinter survival rate times the reproductive rate of the first 

generation equals 1; Eq. (27) means the reproductive rate of the second generation at 

the main patch equals 1; and Eq. (28) means the dispersal survival rate times the 

reproductive rate of the generation at the sub patch equals 1. The reproductive rate of 

individuals that enter dormancy is naturally 1. We also say from the above relations 

that the mortality during the overwinter period (l-W) is exactly compensated by the 

reproduction by the overwintering generation, and the stationary numbers of adults in 

the first generation, both in the main and sub patches, are independently determined. 

Explicit forms of the optimal rates (Di* and Do*) and the stationary values are 

given as 

. _  d*/V 
Di x* ' (29) 

y'* --Z* 
Do*= y ,  , (30) 

y* =x*--  d*/V, (31) 

x * -- soFo W--  1 
aoFoW ' (32) 

z * -  s l F 1  - 1 
alF1 ' (33) 

d*/V-- s2F2V-- 1 
azF9 V (34) 
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We can see that the optimal dispersal rate (Di*) becomes large when W is small, V is 

large, the patch for the first generation is inferior (smaller so, smaller F0 or larger a0), or 

the sub patch for the second generation is superior (larger sz, larger F2 or smaller a2). 

Di* is independent  of the main patch parameters.  The  conditions for the optimal 

dormancy rate (Do*) to be large are that the reverses of  the above conditions to be the 

case, and the main patch is inferior. 

Let  us consider the relation between the optimal rates and W or V. When  W is 

larger, Di* decreases while Do* increases. When  V increases, Di* increases while Do* 
decreases. We thus show the relation in Fig. 2 where the increase in the dispersal rate 

corresponds to the decrease in the dormancy  rate and vice versa. We may regard this 

relation between Oi* and Do* as a trade-off of strategies where one compensates for the 

other. 

We have obtained the conditions in the case where both Di* and Do* exist between 

0 and 1 (O~Di*'( I and O~Do*~ 1). We can get the conditions in other cases where 

Do *= 1 and O<Di*< l ,  Do*=0  and O<~Oi*< 1, and Do*=0  and Oi*•O are ESS's (see 

Appendix).  These ESS's,  with the first case, can be represented as a function of the 

suitability of the main patch (sl) as shown in Fig. 3. The  interesting dependency of 

Di* and Do* on ss can be explained in biological contexts. When  Sl is sufficiently large, 

the individuals in the main patch neither disperse nor  enter dormancy.  I f  ss takes a 

smaller value, individuals first begin to disperse without dormancy.  The  dispersal 

rate (Di*) increases as ss decreases. At a certain value of ss, where the dispersal rate 

does not increase any further because of the density-effect of the sub patch, it becomes 

constant and the remaining individuals at the main patch begin to enter  dormancy.  

When  ss is at the worst value, individuals do not reproduce at the main patch and they 

disperse or enter dormancy.  As shown in Appendix,  the threshold value ofss at which 

the dispersal rate begins to increase from 0 is smaller as as is smaller, FI larger, V 

smaller, s2 smaller or F2 smaller. The  critical value of ss at which the dormancy rate 

begins to increase is smaller as as is smaller, Fs larger, V larger or the sub patch is 

better (large s2, large F2 or small az). The  other parameters  (as or F1) representing the 

suitability in the main patch also have the same effect on Di* and Do* as ss. 

Parameter-dependent  Strategies 

We have derived the optimal dispersal and dormancy  rates assuming that the 

rates are independent  of any other parameters.  We call them constant rate 

strategies. The  dispersal and dormancy rates may  depend on a certain parameter ,  for 

example, density (density-dependent) or survival rate from egg to adult in the main 

patch (patch-quali ty-dependent).  Let  us assume that these rates are density- 

dependent ,  such that 

1 
Di= 1 -Faxt (35) 

and 
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Fig. 2. Two examples of the trade-off between optimal dispersal (Di*) and dormancy (Do*) 
rates. As the survival rate during dispersal (V) increases, Di* increases and Do* 
decreases. Where so=0.7, ao=0.01, Fo=50 , sx=0.5, a1=0.05, F1=20, s2=0.5, a2=0.01, 
F2=20 and W=0.5. As the survival rate during overwintering (IV) increases, Di* 
decreases and D~* increases. Where s0=0.7 , ao-~0.01, Fo=50, s1=0.5, aa =0.03,/'1=30, 
s2=0.2, a2=0.01, F2=20 and V=0.5. 

1 
Do-- 1 + ~y~" (36) 

In  this case, we should derive the opt imal  values, a*  and/~*. The  ESS condition that  

the reproduct ive rate per  year  is 1 regardless of  the path  that  the individual takes 

should also hold in this case. The  condition leads a result that  the stat ionary numbers  

of  individuals are the same as those when the constant strategies were investigated. 

Then ,  a *  and/3*  satisfy next equations: 

1 
Oi*-- I -l-a'x* (37) 

and 

1 
Do * =  1 + / ~ .2 ,  �9 (38) 

These  equations mean  that  the opt imal  dispersal and do rmancy  rates are essentially 

the same in temporal ly  constant  envi ronments  even if Di and Do are dependent  on 
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Fig. 3. The relationship of optimal dispersal rate (Di*) and optimal dormancy rate (Do*) with 
the survival rate at the main patch (sl). In case of gradual deterioration of the main patch, 
individuals should primarily disperse to the sub patch without dormancy and only secon- 
darily enter dormancy with a constant dispersal rate. Parameters values are s0=0.5 , a0 = 
0.01, F0=100, a1=0.01, F1=50, s2=0.3, a~=0.01, F2=10, V=0.5 and W=0.5. 

other parameters.  We can easily expand this result to general cases where the rates 

are arbi trary functions of any given set of  parameters.  

Discussion 

In the bivoltine case, we have shown that dormancy  and dispersal may  be 

complementary to each other to escape from locally unfavorable environments (see 

Fig. 2). Although this property has been confirmed for adaptation for unpredictable 

fluctuating environments (Cohen and Levin, 1987), it can be said that the trade-off 

between dormancy and dispersal may  evolve under  stable environments.  

Under  the stationary condition, we found the interesting relationship between the 

optimal dormancy rate (Do*), the optimal dispersal rate (Di*), and the survival rate at 

the main patch (si) in bivoltines (Fig. 3). Individuals neither disperse nor  enter 

dormancy if the main patch is superior. They  disperse to the sub patch without 

dormancy,  and then enter  dormancy with a constant dispersal rate, as the main patch 

becomes inferior. This  pat tern of the optimal strategy suggests that individuals may 

respond to changes in the suitability of patches in seasonally changeable environments 
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in real life. At present we cannot  find actual data showing this pattern in the bivoltine 

cases, but  we will show later the similar t rend in a univoltine case. 

In our  model, the individuals taking the dormancy strategy eventually vanish in 

the univoltine case when the environmental  parameters  are constant. Since some of 

the individuals die during hibernation as stated before, the overwintered individuals 

should compensate somewhere for that loss. Nakamura  and Ohgushi  (1979) and 

Ohgushi  and Sawada (1985) reported the existence of individuals taking dormancy in 

the univoltine lady beetle, Henosepilachn niponica (Hn). In actual fields, environments 

are no doubt  temporally fluctuating. In another  paper (Tsuji and Yamamura ,  in 

preparation),  we will show by numerical  calculation that the optimal dormancy rate 

may  not be 0 in univoltines when the environment is fluctuating, and that the optimal 

strategy changes in the similar way as shown in Fig. 3. 

Actually, the univoltine lady beetle (Hn) ceases oviposition when the percentage 

of thistle leaf damage is about  50 % in a cage experiment,  and they resume oviposition 

after they are transferred to another  cage with a fresh thistle (Ohgushi and Sawada, 

1985). This response may be regarded as a strategy by which to avoid a derogated 

patch and disperse to another  patch for oviposition. Ohgushi and Sawada (1985) also 

reported the observational results on Hn as follows. Lady beetles in the field gradually 

increase the intensity of movement  from May  to the middle of June ,  and gradually 

decrease the intensity of movement  after late June .  The  proport ion of individuals 

with reabsorbed oocytes rapidly increased after late June .  In the laboratory 

experiment,  females in high density cages reabsorb oocytes at the end of the 

experiment  when most of the thistles are highly exploited. It is expected that food is 

superior in early May  because there are few active overwintering adults and the thistles 

are not severely exploited, and that food condition gradually deteriorates because 

active overwintering adults increase as well as newly emerged adults in the first 

generation. This observation on the response to deterioration of the main patch 

corresponds to the tendency of the theoretical results in constant environments,  i.e.,  

dispersal to be pr imary and dormancy to be secondary. 

We have not fully analyzed cases where dispersal and dormancy  rates (Di and Do) 
are direct functions of some parameters,  such as density or a survival rate. In another  

paper we shall present such cases under  fluctuating environments,  and compare 

differences among the constant strategy, the densi ty-dependent  strategy and the patch- 

quali ty-dependent  strategies (Tsuji and Yamamura ,  in preparation).  
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Di* and Do* when sl changes. 
1, or an intermediate value. 

(i) When Do *= 1 and O<Di*< 1, the conditions are 

~ /  (bi=Di*, Do*= 1) =0 '  

o~,~ >o 
OD~ 

and 

APPENDIX 

There are 4 ESS conditions depending on whether Do* or Di* takes 0, 

4)(bi=Di* Do*= 1)= 1. 

From the above equations, we have 

sl < 1/FI. 

(ii) When 0</9o*< 1 and 0<Di*< 1, 

_~l <s,<aa(soFoW--1 s2F2V--1)_ t 1 
aoFo W a2F2 V FI 

as analyzed in the text. 

(iii) When Do*=O and O<Di*< 1, 

a+ 
abi (bi=Di *, Do*=O) =0' 

ab. <o 

and 

~(b,=D~*, Do*=0)= 1. 

From Eqs. (A6)-(A8), we have 

d*/v= s2F2 VW(o~o + soFoalF 0 -  (aoFo Ws~F1 + ~F~) 
aoFo VW(ssFla2F2 + alFls2F2) + a2F2alFl V 

From 0 < Di* < 1, we obtain 

( s~176 W -  1 s2F2V--1)"~1 ax aoFo W " a2F2 V + <sl<  s2F2 V s2F2 Vsoalao 

(iv) When Do*:0 and Di*=0, 

a~ <0, OD~ 

0~ <0 
ODo 

(~(Di*=0, Do*=0)= I. 

and 

51 
aoFoW' 

(A1) 

(h2) 

The condition is 

s2F 2 V ~ szF 2 VSoal 
F1 ao 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(Aa) 

(A9) 

(A10) 

(All) 

(A12) 

(M3) 

aa <sl < 1. (A14) 
aoFo W 


