The aggregation behavior of Harmonia axyridis in its native range in Northeast China

S. Wang \cdot J. P. Michaud \cdot X. L. Tan \cdot F. Zhang \cdot X. J. Guo

Received: 12 August 2010/Accepted: 7 October 2010
© International Organization for Biological Control (IOBC) 2010

Abstract

Harmonia axyridis has become notorious as an urban pest in many of the regions where it has been introduced, despite its numerous contributions to the biological control of insects injurious to agriculture and horticulture. Aggregative behavior prior to overwintering leads to invasions of human habitations as beetles seek refuge from freezing temperatures. Here we describe the aggregation behavior of native H. axyridis populations of northeast China that breed in agricultural fields (mostly corn and rice) and shrub/ forest habitats and then migrate through rural villages in autumn. More than 140,000 beetles were collected during direct observations in 16 villages in five townships in Jilin Province. Beetles aggregated on dwellings shortly after agricultural harvests, favoring white walls with southern exposures, the largest

[^0]aggregations occurring in villages in mountainous townships at higher elevations. The sex ratio was consistently female-biased and succinic phenotypes were more than twice as abundant as melanic phenotypes in all locations. A special trap compared the relative attractiveness of different surface colors (white $>$ yellow $=$ black $>$ green $>$ red $=$ natural wood) and potential baits (corn pollen $=$ honey $>$ caramel $=$ cocoa $>$ milk $=$ blank control). All aggregations disappeared abruptly just prior to the first frost, whereupon beetles were discovered sheltering in montane caves with southern aspects at higher elevations. Villagers reported substantial expenditures on pesticides in efforts to eliminate beetles from their homes every autumn. Invasion of human habitations appears to be an intrinsic tendency of native H. axyridis populations in China, which is the result of behavioral adaptations for cold-avoidance.

Keywords Aggregation • Attraction • Bait • Coleoptera • Coccinellidae • Overwintering

Introduction

The Asian multicolored lady beetle (aka Harlequin ladybird), Harmonia axyridis (Coleoptera: Coccinellidae), has been successfully utilized as a biological control agent in various agricultural contexts since the early twentieth century (Gordan 1985; ColungaGarcia and Gage 1998; Iperti and Bertand 2001).

Unfortunately, this euryphagous predator has also become an aggressive invasive species in regions where it has been introduced, either intentionally or inadvertently, and has impacted native ecosystems and non-target insects (Williamson 1996; Koch 2003; Kajita et al. 2006; Majerus et al. 2006; Soares et al. 2008). A high degree of phenotypic plasticity and strong intra-guild predation abilities are among the attributes that have contributed to invasive H. axyridis populations dominating assemblages of native coccinellid species (Brown and Miller 1998; Hesler et al. 2001; Alyokin and Sewell 2004; Hodek and Michaud 2008; Brown et al. 2008a, b; Lombaert et al. 2008). A paucity of natural enemies and effective intra-guild competitors, a high degree of environmental adaptability, and behavioral strategies for mitigating the impact of severe winter conditions are among other factors that appear to facilitate its range expansion in novel habitats (McClure 1987; Bazzocchi et al. 2004; Pell et al. 2008; Labrie et al. 2008).

In their native range, overwintering H. axyridis typically migrate up mountain slopes to moderate elevations and aggregate in natural shelters such as caves, usually selecting those with good exposure to the sun (Tanagishi 1976; Sakurai et al. 1993). Sometimes, many thousands of beetles will swarm together in refugia that mitigate their exposure to freezing conditions. The size, location and differential survival of these aggregations largely determine the local abundance of H. axyridis populations that return to nearby agricultural habitats the following spring. This general behavior is replicated in regions where H. axyridis is an invasive alien species and often results in swarms that invade human residences, sometimes in exceedingly large numbers (Kidd et al. 1995; Nalepa et al. 1996), resulting in the beetle's reputation as an urban pest. Home invasions by H. axyridis cause a range of nuisance problems: stained furniture, soiled surfaces (Nalepa et al. 2004) superficial bites (Kovach 2004) and even allergic reactions (Yarbrough et al. 1999; Goetz 2007). Research in the USA suggests that migration begins in late autumn when temperatures approach $5^{\circ} \mathrm{C}$ (Huelsman et al. 2002) and cumulative exposure to low temperature has been used to predict aggregative flight in Japan (Zenyogi 2008). High colour contrasts on the surface of buildings tends to attract migrating beetles (Nalepa et al. 2005). With the advent of invasive populations in Europe and elsewhere the
species is alien, considerable research attention has been directed toward studying the biology and behavior of H. axyridis in these novel habitats (Kenis et al. 2008; Pell et al. 2008; Soares et al. 2008). Apart from some work in Japan (Osawa 2001), little is known about the overwintering behavior of indigenous H. axyridis populations in Asia compared to what is known of invasive populations in alien regions.

The aim of the present investigation was to characterize the migration and aggregation behavior of H. axyridis overwintering populations in a mountainous region of northeast China. Jilin Province is an important agricultural region comprised of a sweeping plateau of cultivated fields in the west that slopes upward toward forested mountains in the east. Previous studies have examined the phenotypic composition of overwintered H. axyridis aggregations in this and other regions of China. For example, Yuan et al. (1994) cataloged 164 different succinic phenotypes and 12 melanic forms in a survey of the central and western parts of Jilin province. Other surveys have found that succinic phenotypes tend to outnumber melanics in northern Chinese provinces (Jing et al. 2001; Jiang et al. 2007). Our study focused on rural areas surrounding Jilin City in the center of Jilin province in the transition zone between the agricultural belt and more mountainous regions subject to natural conservation. Preliminary observations indicated high densities of H. axyridis in major field crops of the region (rice, corn and soybean) and the potential for impacts of overwintering beetles in nearby towns and villages. We began our study of H. axyridis migration and aggregation in mid-September to coincide with the completion of harvest, on the assumption that the abrupt drop in food availability for beetles would trigger their departure from agricultural habitats. We considered sex ratio, phenotype ratio (succinic:melanic), temporal variation in arrival of colour morphs, the character of surrounding landscape, and additional geographic factors. The local density of human inhabitants was estimated as metric of village size to test for any relationship with beetle aggregations. A special trap was employed to evaluate the relative attractiveness of various visual, tactile, and olfactory stimuli. Finally, the impacts of invading H. axyridis aggregations on local residents were estimated by use of interviews and distribution of a questionnaire.

Materials and methods

Study sites
Surveys of H. axyridis overwintering populations were conducted during the period from September 11 to October 10, 2009 in Jiaohe and Yongji counties in Jilin province, China. Sixteen villages were selected for sampling, ten in Jiaohe County and five in Yongji County (Fig. 1). The villages were separated by an arbitrary minimum distance of 1.0 km to ensure they represented independent observation points. The landscape surrounding villages ranged from mostly agricultural (categorized by the predominant crop as either corn fields or rice paddies) to mostly natural (categorized by the predominant woody vegetation as either scrubland or forest). The towns of Lafa and Qingling occur within nationally protected nature conservancies where there is little agriculture, but considerable disturbance from tourism.

Global position data were collected for each site using a handheld GPS receiver. The habitats surrounding each village to a radius of 5.0 km were digitized using ARC GIS 8.3 (Ormsby et al. 2004). Four primary landscape types were resolved from digital images: cultivated fields dominated by either corn or rice, and natural vegetation dominated by either trees or shrubs. The altitude of each village was measured at the spatial coordinate for its central point. The geographic characteristics of the sampled villages are reported in Table 1. For purposes of analysis, we divided villages into three categories according to their elevation: low (200-270 mASL), medium ($271-340 \mathrm{~m}$), and high ($>340 \mathrm{~m}$). Villages were divided into two categories according to population density: small (<100 inhabitants) or large (>100).

Direct sampling of adults

In each village, white houses with an open southern exposure were selected for sampling H. axyridis on their outer walls between the hours of 14:00 and 17:00 when these surfaces were under direct insolation. Ten independent observation points were established in each village, each separated by a minimum distance of 100 m . At each sampling site, a white plastic board $\left(1.0 \mathrm{~m}^{2}\right)$ with a roughened surface was stuck to the wall and a raised plastic frame $(3.0 \mathrm{~cm}$
high) was mounted around the perimeter of the board (Fig. 2). As beetles tended to land toward the center of the board and then accumulate in the corners, we collected them as they passed through the two trapezoidal regions using a small insect net. Boards were mounted on each house at 9:00 h and removed shortly after sunset. Beetles were collected continuously for a 3 h period, from 14:00 to 17:00 h, once at each of ten different observation sites in each of the 16 villages.

Samples of live beetles obtained from direct collection were transferred to plastic boxes ($45 \times$ $30 \times 30 \mathrm{~cm}^{3}$, ca. 1,200 beetles per box). Each box was covered with fabric (19.2 holes cm^{-2}) to permit ventilation and provisioned with milk popcorn as a food supplement. All samples were sent by airmail to the Entomology Laboratory of the Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences where they were examined within 48 h of arrival. Three types of data were recorded for all experiments: total number of beetles (caught by netting or in traps), sex ratio, and the ratio of succinic to melanic phenotypes. All phenotypes in which the background colour of the elytra was dark were categorized as melanic, all in which the background colour was some shade of yellow, orange or red were categorized as succinic. Beetles were sexed according to the colour of the clypeus, which is significantly paler in males.

Trapping

At 15 of the 16 sampling locations, we installed traps made of wood and polyurethane in order to collect H. axyridis adults over specified time intervals and to test the attractiveness of trap attributes and potential food resources when placed in the bottom of the trap chamber (Fig. 3). Extensive construction activity prevented trapping in Hou-baliqi village. Two baffle plates were installed in the interior of the chamber to prevent beetles escaping and a layer of soft sponge covered the bottom. Traps were installed on southernfacing external house walls at 9:00 a.m. on each sampling day and beetles were collected between 4:00 and 5:00 p.m. by dropping the hinged floor of the trap and emptying the contents into containers. Tests of surface colour, surface texture and food baits were performed at each sampling location on each of three successive days in each village.

Fig. 1 Map of Jilin Province, PRC, showing location of villages where H. axyridis aggregations were observed and sampled

Table 1 Geographic and demographic information for sampled villages

County	Township	Village	Latitude	Longitude	Elevation (mASL)	Population	Predominant vegetation
Jiaohe	Xinnong	Xiashitouhezi	$43^{\circ} 39^{\prime} \mathrm{N}$	$127^{\circ} 17^{\prime} \mathrm{E}$	264	130	Corn fields
		Banlawoji	$43^{\circ} 38^{\prime} \mathrm{N}$	$127^{\circ} 16^{\prime} \mathrm{E}$	262	145	Corn fields
		Niu-a	$43^{\circ} 40^{\prime} \mathrm{N}$	$127^{\circ} 17^{\prime} \mathrm{E}$	265	266	Corn fields
		Paoziye	$43^{\circ} 38^{\prime} \mathrm{N}$	$127^{\circ} 16^{\prime} \mathrm{E}$	254	242	Corn fields
		Qijianfang	$43^{\circ} 37^{\prime} \mathrm{N}$	$127^{\circ} 16^{\prime} \mathrm{E}$	275	185	Corn fields
	Lafa	Minzhu-tun	$43^{\circ} 49^{\prime} \mathrm{N}$	$127^{\circ} 23^{\prime} \mathrm{E}$	440	145	Forest
		Liangzi-tun	$43^{\circ} 47^{\prime} \mathrm{N}$	$127^{\circ} 24^{\prime} \mathrm{E}$	309	113	Forest
	Qingling	Xiadian	$43^{\circ} 43^{\prime} \mathrm{N}$	$126^{\circ} 52^{\prime} \mathrm{E}$	353	262	Scrubland
		Erdaogou	$43^{\circ} 42^{\prime} \mathrm{N}$	$126^{\circ} 52^{\prime} \mathrm{E}$	417	254	Forest
Yongji	Jinjia	Bei-liushugou	$43^{\circ} 45^{\prime} \mathrm{N}$	$127^{\circ} 02^{\prime} \mathrm{E}$	339	203	Corn fields
		Dayanggo	$43^{\circ} 35^{\prime} \mathrm{N}$	$125^{\circ} 57^{\prime} \mathrm{E}$	249	144	Rice paddies
		Hanjiago	$43^{\circ} 36^{\prime} \mathrm{N}$	$125^{\circ} 59^{\prime} \mathrm{E}$	293	272	Rice paddies
	Chaluhe	Hiwopqibao	$43^{\circ} 39^{\prime} \mathrm{N}$	$125^{\circ} 59^{\prime} \mathrm{E}$	235	133	Rice paddies
		Xian-baliqi	$43^{\circ} 43^{\prime} \mathrm{N}$	$125^{\circ} 55^{\prime} \mathrm{E}$	200	260	Rice paddies
		$43^{\circ} 42^{\prime} \mathrm{N}$	$125^{\circ} 55^{\prime} \mathrm{E}$	203	140	Corn fields	
		Hou-baliqi	$43^{\circ} 41^{\prime} \mathrm{N}$	$125^{\circ} 57^{\prime} \mathrm{E}$	206	225	Corn fields

[^1]

Fig. 2 Diagram of sampling board $\left(1.0 \mathrm{~m}^{2}\right)$ used for direct collection of aggregating H. axyridis adults. The triangular black regions in opposite corners were $40 \times 40 \times 57 \mathrm{~cm}^{3}$ $\left(800 \mathrm{~cm}^{2}\right)$, and the two gray trapezoidal regions directly adjacent to them were each $736 \mathrm{~cm}^{2}$ in area. Beetles were collected with a small hand-held insect net as they passed through the trapezoidal regions

Comparison of trap surface colors

Since the assembly of insects on surfaces can be correlated with the background colour (Marshall
2006), we tested six trap surface colours: yellow, red, black, white, green and natural wood. Honey was used as an attractant and all surfaces were coated with a layer of varnish. The six traps of different colours were tested on a single day at each sampling location by mounting each trap on the southern-facing wall of a different house, each separated by a minimum distance of 10 m .

Comparison of trap surface textures

We tested various surface textures for effects on beetle assembly including varnished natural wood (smooth), granular (rough) and corrugated (ridged). The traps in this experiment were white in colour and used honey as an attractant. Three traps, each of a different surface texture, were tested on a single day at each sampling location by mounting each trap on the southern-facing wall of a different house, each separated by a minimum distance of 10 m .

Comparison of food baits

To compare the relative attractiveness of different materials to H. axyridis adults, we conducted a series of experiment using honey, cocoa, milk, corn pollen and caramel as potentially attractive resources, with

Fig. 3 Diagram showing dimensions and design of the traps used to catch aggregating H. axyridis adults. Traps were constructed of wood with a hinged floor to facilitate removal of beetles. The exterior roof and wall surfaces were painted
different colors or modified with different surface textures to test for effects on trap catches (see text for details). The relative attractiveness of various food baits was tested in white traps
water as a control. Each material was tested once at each observation site in a white trap. Times of collection and replication were the same as for surface colour trials. The traps containing different baits were tested on a single day at each sampling location by mounting each trap on the southernfacing wall of a different house, each separated by a minimum distance of 10 m .

Assessment of urban impact

To estimate the numbers of beetles invading homes, residents of cooperating households were requested to count all beetles within a window frame $\left(1.5 \times 1.5 \mathrm{~m}^{2}\right)$ on one afternoon during the period of peak beetle activity, sometime between 1:00 and 3:30 p.m.

Interviews were conducted with inhabitants of the sampled villages to assess the impact of overwintering H. axyridis on the urban population. Residents were shown representative specimens of common coccinellid species so as to be able to distinguish species (Coccinella septempunctata, H. axyridis, Hippodamia variegata, Propylea japonica). The following questionnaire was distributed:
(1) What is the major crop planted on your farm?
(2) What was the approximate harvest date of the major crops?
(3) What was the date on which H. axyridis aggregations appeared?
(4) What was the date on which H. axyridis aggregations disappeared?
(5) Do beetles enter your home and cause nuisance problems?

Statistical analysis

The numbers of adults sampled directly at each observation site were analyzed using a nested ANOVA design to resolve the respective effects of 'township' and 'village'. When more than two groups were compared, means were separated by Fisher's LSD when sample sizes were equal, and by Duncan's Multiple Range Test (MRT) when they were not. A binomial test was used to test sex and phenotype ratios for asymmetry. A three-way ANOVA was used to analyze results with landscape type, elevation, and human population density as independent variables. A one-way ANOVA was used to compare trap
catches, followed by Fisher's LSD test to separate means of different trap types.

Results

Direct sampling of adults
A total of 144,528 adult H. axyridis were collected during direct observations. The nested ANOVA revealed significant effects of 'township' ($F_{4,15}=$ 50.41; $P<0.0001$) and 'village (township)' ($F_{4,11}=$ $9.90 ; P<0.0001$) on the numbers of beetles collected during direct sampling, the ratio of succinic:melanic phenotypes $\left(F_{4,15}=4.52 ; P=0.0018\right.$ and $F_{4,11}=3.85 ; P<0.0001$, respectively), the numbers of beetles intrusive in residences ($F_{4,15}=$ 86.34; $P<0.0001$ and $F_{4,11}=39.28 ; P<0.0001$, respectively), but the effects of location on sex ratio were only marginally significant ($F_{4,15}=2.30 ; P=$ 0.0617 and $F_{4,11}=1.83 ; P=0.0544$, respectively).

The mean values of dependent variables and their standard errors are reported for each village in Table 2. On the basis of these data, beetle landing rates averaged $2.5 \mathrm{~m}^{-2} \mathrm{~min}^{-1}$ over all observation periods, although this is certainly an underestimate considering that not all beetles landing on the sampling board were successfully collected. Comparing the mean number of beetles collected per site among townships ($F_{4,15}=30.77 ; P<0.0001$), the mountainous townships of Qingling and Lafa yielded the highest counts (568.5 ± 193 and 541.4 ± 28.50), followed by Chaluhe (417.3 ± 8.8) which was not different from Xinnong (412.5 ± 9.5) which, in turn, was not different from Jinjia (370.9 ± 11.8), the locality that had the earliest agricultural harvest, beginning in September (Duncan's MRT, $\alpha=0.05$).

There were significant effects of 'landscape' and 'elevation' on the numbers of beetles collected, and the 'landscape \times elevation' interaction was significant (Table 3). The latter interaction occurred because landscape varied significantly with elevation $\left(F_{3,156}=\right.$ 94.89; $P<0.0001$) and beetle numbers increased significantly with elevation ($F_{2,157}=65.57 ; P<$ $0.0001 ; r^{2}=0.293$). The number of beetles collected (means $\pm \mathrm{SE}$) varied with landscape type as follows: shrubland $(643 \pm 24)>$ forest $(523 \pm 21)>$ corn $(428 \pm 10)=$ rice (395 ± 12). There was no significant effect of 'population density', nor was there any

Table 2 Mean numbers ($\pm \mathrm{SE}$) of H. axyridis adults collected in three hours of sampling from the outer walls of each of ten houses in each of 16 villages located in five different townships
in Jilin Province, China, their phenotype ratios, sex ratios and the numbers observed within residences during a single midafternoon window observation (No. intrusive)

Township	Village	No. beetles	Succinic:melanic	Female:male	No. intrusive
Xinnong	Xiashitouhezi	402.9 ± 12.6	3.2 ± 0.7	2.3 ± 0.1	47.5 ± 3.0
	Banlawoji	364.3 ± 10.9	2.7 ± 0.6	2.0 ± 0.1	40.1 ± 2.2
	Niu-a	352.4 ± 15.3	3.1 ± 0.5	1.9 ± 0.1	38.2 ± 1.9
	Paoziye	447.2 ± 11.8	3.0 ± 0.8	1.5 ± 0.1	46.4 ± 2.2
	Qijianfang	495.7 ± 15.8	3.2 ± 0.4	1.5 ± 0.1	50.3 ± 2.1
	Minzhu-tun	617.7 ± 22.4	2.7 ± 0.5	1.9 ± 0.2	53.0 ± 2.7
Lafa	Liangzi-tun	465.1 ± 40.3	1.9 ± 0.3	1.9 ± 0.2	40.9 ± 4.1
	Xiadian	643.3 ± 24.2	6.5 ± 0.6	2.0 ± 0.1	131.2 ± 8.1
	Erdaogou	487.3 ± 28.3	2.5 ± 0.3	2.2 ± 0.1	47.1 ± 3.3
	Bei-liushugou	574.9 ± 29.5	2.9 ± 0.3	2.1 ± 0.1	64.5 ± 3.3
	Dayanggo	401.3 ± 16.0	2.6 ± 0.2	2.1 ± 0.3	42.6 ± 1.6
	Hanjiago	308.4 ± 17.2	2.6 ± 0.6	1.7 ± 0.3	35.5 ± 2.1
	Huangqibao	402.9 ± 11.9	2.3 ± 0.4	2.1 ± 0.3	44.5 ± 1.6
	Xiwopeng	467.6 ± 22.2	3.5 ± 0.5	2.3 ± 0.1	51.2 ± 2.5
	Qian-baliqi	382.0 ± 14.8	2.8 ± 0.4	2.2 ± 0.1	39.3 ± 1.6
	Hou-baliqi	402.3 ± 16.9	2.4 ± 0.3	2.1 ± 0.1	40.8 ± 0.8
		451.0 ± 8.8	3.0 ± 0.1	2.0 ± 0.05	50.8 ± 1.9

significant interaction between 'population density' and any other independent variable. Shrubland had the highest mean counts of H. axyridis but this landscape type was represented by only a single village. Forest landscape, with three villages represented, had the next highest counts, followed by the two agricultural landscapes, corn fields and rice paddies, that were not significantly different from one another (Duncan's MRT, $\alpha=0.05$).

Landscape also had a strong effect on the number of beetles intrusive in residences, whereas elevation had a small effect, population density had no effect and the landscape \times elevation interaction was highly significant, once again because these variables were not entirely independent (Table 4). The number of intrusive beetles was positively correlated with the proportion of succinic phenotypes in outdoor samples ($F_{1,158}=42.91 ; P<0.0001 ; r^{2}=0.214$).

Results of binomial tests revealed that the phenotype ratio was significantly biased in favor or succinics in all five townships ($P_{(2 \text {-tailed })}<0.001$ in all cases). Landscape was the only independent variable to have a significant effect on phenotype ratio in a three-way ANOVA $\left(F_{3,156}=11.385\right.$;
$P<0.001$), and this was only because of the effect of the forest village of Erdaogou in Qingling Township which had more than twice the ratio of succinics to melanics compared with any other landscape type. Sex ratios were consistently femalebiased in all five townships $\left(P_{(2 \text {-tailed })}<0.001\right.$ in all cases). Apart from a marginal effect of elevation on sex ratio $\left(F_{2,157}=2.96 ; P=0.055\right)$, no other independent variable had a significant effect (landscape: $F_{3,156}=0.37 ; \quad P=0.777 ;$ population density: $F_{1,158}=0.05 ; P=0.822$), so a three-way ANOVA was not performed. The number of beetles tallied as intrusive during observations within residences was correlated with counts of beetles tallied in outdoor aggregations $\left(F_{1,158}=131.52 ; P<0.0001\right.$; $r^{2}=0.451$)

Trapping

Comparison of trap surface colours

Surface coloration significantly influenced trap catches $\left(F_{5,84}=54.47 ; P<0.0001\right)$ and the ratio of phenotypes caught $\left(F_{5,84}=2.45 ; P=0.041\right)$. Bright

Table 3 Three-way ANOVA results for effects of landscape, elevation and human population density on the number of beetles obtained through direct collection in 16 villages in Jilin Province, China

Source of variation	df	Mean square	F	P
Landscape	3	$88,769.636$	19.456	<0.001
Elevation	2	$61,170.441$	13.407	<0.001
Population density	1	2.853	0.001	0.980
Landscape \times elevation	1	$333,600.053$	73.116	<0.001
Landscape \times population density	1	$10,604.328$	2.324	0.129
Elevation \times population density	1	$14,245.004$	3.122	0.079
Error	149	$4,562.642$		
Total	160			

Table 4 Three-way ANOVA results for effects of landscape, elevation and human population density on the number of beetles intrusive in residences in 16 villages in Jilin Province, China

Source of variation	df	Mean square	F	P
Landscape	3	$12,402.02$	123.87	<0.0001
Elevation	2	335.54	3.35	0.038
Population density	1	339.00	3.38	0.068
Landscape \times elevation	1	$4,423.68$	44.12	<0.001
Landscape \times population density	1	306.57	3.06	0.082
Elevation \times population density	1	810.34	8.08	0.005
Error	149	100.27		
Total	160			

white was more attractive to H. axyridis than other colours, with yellow and black the next most attractive (Fig. 4). Red and natural wood were the least attractive background colors, with green intermediate. All colours attracted more succinic beetles than melanics $\left(P_{(2 \text {-tailed })}<0.001\right.$ in all cases), because succinic beetles were more than twice as abundant as melanics at all locations.

Comparison of trap surface textures

Surface texture did not affect the total numbers of beetles caught ($F_{2,42}=1.12 ; P=0.336$) and succinic beetles outnumbered melanics on all surfaces $\left(_{(2 \text {-tailed })}<0.001\right.$ in all cases). Whereas traps with smooth and granulated surfaces caught three times as many succinic beetles as melanics, traps with ridged surfaces caught 4.5 times as many, a significantly greater proportion ($F_{2,42}=3.33$; $P=0.045$; Fisher's LSD, $\alpha=0.05$).

Fig. 4 Mean (+SE) numbers of H. axyridis adults caught in traps of different colors. Means bearing the same letters were not significantly different (Fisher's LSD, $\alpha=0.05$)

Comparison of food baits

The type of food resource offered in traps significantly affected the numbers of beetles caught ($F_{5,84}=86.52 ; P<0.001$). Honey and corn pollen were the most attractive baits, followed by caramel

Fig. 5 Mean (+SE) numbers of H. axyridis adults caught in traps baited with different food resources. Means bearing the same letters were not significantly different (Fisher's LSD, $\alpha=0.05$)
and cocoa, whereas milk was no more attractive than the water control (Fig. 5). The ratio of succinic to melanic phenotypes was not affected by the type of bait ($F_{5,84}=1.65 ; P=0.157$), although succinics outnumbered melanics in every treatment ($P_{(2 \text {-tailed })}$ <0.001 in all cases).

Urban impact of H. axyridis aggregations
It should be noted that our observations and survey data were restricted to villages where we found evidence of H. axyridis aggregations and do not include other villages where H. axyridis was not problematic, for whatever reason. Data on the appearance and disappearance of H. axyridis aggregations in rural villages and the summary of responses to survey questions are reported in Table 5. Migration from low-lying agricultural fields occurred about two weeks later than that from scrubland and forest habitats. Anecdotal records kept by local residents over the past five years indicated that beetles usually began aggregating in villages after September 1 and later migrated to higher mountainous regions before the first frost. In our survey, beetles left residences and disappeared en masse on October 3, the day immediately prior to the first frost. At this time, large numbers of H. axyridis adults were found at higher elevations in montane habitats to the east.

Table 5 Summary of responses to survey questions by residents of rural villages in Jilin Province, China

Township	Village	N^{*}	Major crops	Harvest dates	Date of H. axyridis urban appearance	Date of H. axyridis disappearance	Are beetles a nuisance in your home? (\% "yes" answers \pm SE)
Xinnong	Xiashitouhezi	92	Corn \& rice (80) Vegetables (12)	Corn: 12-18 September Rice: 13-27 September	17-27 September	1-5 October	98.9 ± 1.09
	Blanlawoji	84	Corn \& rice (82) Ornamentals (2)	Corn: 13-18 September Rice: 13-26 September	15-23 September	1-5 October	95.2 ± 2.33
	Niu-A	98	Corn \& rice (76) Vegetables (22)	Corn: 13-17 September Rice: 13-26 September	17-26 September	2-5 October	100.0
	Paoziye	100	Corn \& rice (90) Vegetables (10)	Corn: 14-17 September Rice: 13-26 September	15-28 September	1-6 October	100.0
	Qijianfang	94	Corn \& rice (83) Vegetables (11)	Corn: 12-17 September Rice: 13-27 September	16-24 September	1-5 October	98.9 ± 1.08
Lafa	Minzhu-tun	88	Corn \& rice (13) Medicinal herbs (75)	Herbs: 4-21 September	17-27 September	1-2 October	97.7 ± 1.60
	Liangzi-tun	95	Corn \& rice (11) Ginger (84)	Herbs: 3-24 September	19-26 September	1 October	100.0
Qingling	Xiadian	95	Corn \& rice (10) Vegetables (85)	Vegetables: 15-18 September	17-27 September	1 October	95.8 ± 2.06
	Erdaogou	98	Corn \& rice (15) Medicinal herbs (83)	Herbs: 10-18 September	13-14 September	1-2 October	100.0
	Beiliushugou	80	Corn \& rice (7) Medicinal herbs (73)	Herbs: 11-15 September	15-19 September	1-2 October	100.0

Table 5 continued

Township	Village	N^{*}	Major crops	Harvest dates	Date of H. axyridis urban appearance	Date of H. axyridis disappearance	Are beetles a nuisance in your home? (\% "yes" answers \pm SE)
Jinjia	Dayanggou	88	Corn \& rice (78)	Corn: 10-16 September	14-25 September	1-4 October	92.0 ± 2.89
			Vegetables (10)	Rice: 14-27 September			
	Hanjiagou	95	Corn \& rice (76)	Corn: 9-14 September	12-23 September	1-4 October	97.9 ± 1.47
			Ornamentals (19)	Rice: 16-27 September			
	Huangqibao	104	Corn \& rice (85)	Corn: 10-15 September	12-23 September	2-5 October	98.1 ± 1.34
			Ornamentals (19)	Rice: 14-27 September			
Chaluhe	Xiwopeng	89	Corn \& rice (69)	Corn: 13-16 September	12-23 September	2-5 October	100.0
			Ornamentals (30)	Rice: 17-27 September			
	Qian-baliqi	87	Corn \& rice (79)	Corn: 11-16 September	13-23 September	1-3 October	97.7 ± 1.61
			Vegetables (8)	Rice: 14-27 September			
	Hou-baliqi	94	Corn \& rice (86)	Corn: 14-18 September	12-23 September	1-4 October	100.0
			Vegetables (8)	Rice: 13-27 September			

*No. respondents

Typical village residences are constructed of brick with windows and doors framed in wood and H. axyridis adults easily penetrated these structures through gaps around the framing. Intrusions by H. axyridis occurred throughout daylight hours, with peak periods of entry reported into occur in the morning and evening. Of a total of 1,481 village residents responding to the survey questionnaire, 1,456 (98.3%) reported that beetles invaded their homes and caused nuisance problems. Almost every household resorted to insecticide applications of some form in attempts to control or prevent home invasions, often at considerable expense. However, most of the materials applied were formulated for control of household pests or mosquitos and were not considered effective in deterring H. axyridis aggregations or preventing their entry into habitations.

Discussion

Factors influencing beetle abundance in villages appeared to act at landscape scale more than at a local level, as reflected by the fact that 'township' accounted for substantially more variation in number of beetles than did 'village' in the nested ANOVA. This was consistent with effects of landscape type on beetle counts and the numbers of beetles intrusive in residences, since landscape type varied among townships. Human population density, reflecting the
relative size of villages, had no discernable effect on any dependent variable. Natural landscapes (shrubland and forest) were associated with higher elevations and greater beetle counts than agricultural landscapes that were dominated by corn fields and rice paddies. Agricultural crops might be expected to generate abundant aphid populations for beetle reproduction, but although H. axyridis is known to be active in corn, it is not reported to forage in rice. However, it clearly has an inherent predilection for woody shrubs and trees, as reflected in its biological control contributions in arboreal habitats such as apple orchards (Brown and Miller 1998), pecan orchards (Mizell 2007), citrus groves (Michaud 2002), and stands of coniferous trees (McClure 1987; Berthiaume et al. 2007).

The onset of H. axyridis migration from the countryside into villages typically lagged the harvest date of the primary local crops by only a few days (Table 5). The size of local aggregations was correlated with the numbers of beetles observed to be intrusive in houses, even though these likely varied somewhat with ease of entry into particular houses. Nalepa et al. (2000) dismissed any significant role of pheromones in preserving H. axyridis annual fidelity to particular overwintering sites, but rather implicated accumulations of feaces, residues, and contact chemical cues from conspecifics. Despite successfully entering residences in substantial numbers, the beetles did not remain inside them for more than a week
or two before continuing their migration to 'natural' overwintering sites at higher elevations (shallow caves, crevices and rocky depressions on montane slopes with southern aspects). Populations of H. axyridis that are invasive in temperate regions of Europe and North America often attempt to remain indoors for the entire winter (Labrie et al. 2008; Berkvens et al. 2010). However, this is typical of regions where there are no mountains to draw beetles to higher elevations. Similarly, in less mountainous regions of China such as Shandong Province, beetle aggregations may remain problematic in residences throughout the winter (Wang Su , unpublished). Female-biased sex ratios have been reported for Japanese populations of H. axyridis (Osawa 2001) and various post-zygotic factors have been implicated, including differential overwintering mortality (Osawa 2001) and infection with male-killing bacteria (Majerus et al. 1998). Even a small discrepancy in the developmental time of male and female eggs could result in differential mortality as a consequence of sibling egg cannibalism (Osawa 2002; Michaud and Grant 2004). The preponderance of succinic morphs over melanics was not unexpected given previous reports (Jing et al. 2001; Jiang et al. 2007). However, autumn sampling at similar latitudes around Beijing indicated that melanics tended to increase in frequency in the fall due to assortative mating until they occured at frequencies similar to succinics (Wang et al. 2009).

The most adverse impact of invasive H. axyridis populations has been their proclivity to enter buildings, especially human habitations, and this has driven research into attractants, repellents and various tactics aimed at trapping, killing or excluding them (Kenis et al. 2008). The orientation of H. axyridis to buildings, especially those in prominent locations such as hill tops (Obata 1986), is consistent with visual orientation to prominent landmarks, or 'macrosites', in the initial stages of aggregation (Nalepa et al. 2005). Cursory inspection revealed that aggregations of H. axyridis tended to form on white, exterior walls with southern exposure, hence our selection of these locations for the trapping experiments. Although different surface textures (smooth, granulated or ridged) had no apparent effect on alightment behavior, tests with various trap colours yielded differences in trap catches via apparent effects on landing frequency. Our results were very
similar to those of Obata (1986) and confirmed that a white surface attracted more beetles than any other colour. Nalepa et al. (2005) conducted experiments to demonstrate the importance of visual contrast in close range orientation, rather the colour white per se, and challenged the results of Obata (1986) on the basis that background contrast was not controlled in those colour trials. However, our results are not entirely consistent with this view; since all our tests were conducted on a white background, the dark coloured traps would have presented higher contrast than white traps, but they collected fewer beetles. If linear contrasts, in specific, are important, as Nalepa et al. (2005) propose (presumably dark lines on a pale background conform to the shape of cracks and crevices that may provide shelter), then the rectangular trap may not have provided the right shape or scale of contrast to increase attraction to dark colours on a white background. The fact that both yellow and black traps attracted similar numbers of beetles, second only to white, suggests that beetles may respond to different colours for different reasons. For example, very light colours such as white and yellow may be intrinsically attractive because of their high reflectivity, whereas black and patterns of linear contrast may be attractive because they are indicative of potential shelter.

Trials in which traps were baited with potential food resources confirmed a positive response to honey and corn pollen, materials well-recognized as important supplementary foods for many aphidophagous coccinellids (Hodek 1996). Since the baits were concealed within the traps, an olfactory response to these materials can be inferred, presumably both pre- and post-alightment. From a practical perspective, the efficiency of any traps installed to collect and remove H. axyridis aggregations could be significantly improved by baiting with either of these materials, an approach now commonly referred to as 'attract and kill' when combined with insecticides.

The invasion of dwellings by H. axyridis is a strongly seasonal behavior and appears to be driven by cold avoidance in the fall. Although H. axyridis acclimates to falling temperatures with freezeavoidant physiological mechanisms typical of many insects, including reduced water content, accumulation of polyols, and altered enzymatic activities, a considerable acclimation period is required for
beetles to achieve their lowest supercooling points and substantial cold-induced mortality may occur even though they do not freeze (Watanabe 2002; Zhao et al. 2008, 2010). Berkvens et al. (2010) demonstrated that the supercooling points of beetles overwintering indoors in Belgium were considerably elevated compared to those overwintering outdoors and suggested that this could lead to significant mortality if indoor beetles became active prematurely. Similarly, Schaefer (2004) observed substantial overwintering mortality in aggregations forming annually in an unheated concrete observation tower that lacked insulation. The tendency to enter buildings is likely an adaptation to avoid coldinduced mortality during quiescence. Thus, H. axyridis remains a successful alien invader in northern latitudes such as Quebec, Canada, despite an inability to overwinter successfully outdoors (Labrie et al. 2008).

Our results demonstrate that aggregation and invasion of buildings are intrinsic propensities of this species within its native range, rather than emergent traits of invasive alien populations. While these findings underscore the importance of obtaining a complete behavioral profile of biological control agents prior to their introduction to exotic locations, even modern standards for assessing candidate predator species for introduction would not necessarily reveal such adverse behavior, since most criteria are based on diet breadth and predatory behavior observed under laboratory conditions. The undeniable biological control contributions of H. axyridis to agriculture are now largely offset by the nuisance impact of this species in urban environments, diminishing general public perception of lady beetles as beneficent agents and generating adverse publicity for biological control efforts. However, the appropriate placement of suitably designed and baited traps may prove to be a viable tactic for collecting aggregations of beetles in locations where they are consistently problematic.

Acknowledgments This research was supported by the National Basic Research Program of China (Program 973) Grant no. 2009CB119206 and Grant no. 2006CB102005-3. We thank Dr. Bao Xiao and Prof. Lu Xianguo for technical support with the field survey and data collection. We are also grateful to K. Giles, J. Kovach and two anonymous reviewers whose suggestions improved the manuscript.

References

Alyokin A, Sewell G (2004) Changes in a lady beetle community following the establishment of three alien species. Biol Invasions 6:463-471
Bazzocchi GG, Lanzoni A, Accinelli G, Burgio G (2004) Overwintering, phenology and fecundity of Harmonia axyridis in comparison with native coccinellid species in Italy. BioControl 49:245-260
Berkvens N, Bale JS, Berkvens D, Tirry L, de Clercq P (2010) Cold tolerance of the harlequin ladybird Harmonia axyridis in Europe. J Insect Physiol 56:438-444
Berthiaume R, Hebert C, Cloutier C (2007) Comparative use of Mindarus abietinus (Homoptera: Aphididae) by two coccinellids (Coleoptera: Coccinellidae), the native Anatis mali and the exotic Harmonia axyridis, in a Christmas tree plantation. Environ Entomol 36:319-328
Brown MW, Miller SS (1998) Coccinellidae (Coleoptera) in apple orchards of eastern West Virginia and the impact of invasion by Harmonia axyridis. Entomol News 109:136142
Brown PMJ, Adriaens T, Bathon H, Cuppen J, Goldarazena A, Hagg T, Kenis M, Klausnitzer BEM, Kovar I, Loomans AJ, Majerus MEN, Nedved O, Pedersen J, Rabitsch W, Roy HE, Ternois V, Zakharov I, Roy DB (2008a) Harmonia axyridis in Europe: spread and distribution of a non-native coccinellid. BioControl 53:5-22
Brown PMJ, Roy HE, Rothery P, Roy DB, Ware RL, Majerus MEN (2008b) Harmonia axyridis in Great Britain: analysis of the spread and distribution of a non-native coccinellid. BioControl 53:55-68
Colunga-Garcia M, Gage SH (1998) Arrival, establishment, and habit use of the multicolored Asian lady beetle (Coleoptera: Coccinellidae) in a Michigan landscape. Environ Entomol 27:1574-1580
Goetz DW (2007) Harmonia axyridis ladybug hypersensitivity in clinical allergy practice. Allergy Asthma Proc 28:50-57
Gordan RD (1985) The Coccinellidae (Coleoptera) of America north of Mexico. J NY Entomol Soc 93:1-912
Hesler LS, Keickhefer RW, Beck DA (2001) First record of Harmonia axyridis (Coleoptera: Coccinellidae) in South Dakota and notes on its activity there and in Minnesota. Entomol News 112:264-270
Hodek I (1996) Food relationships. In: Hodek I, Honek A (eds) Ecology of Coccinellidae. Kluwer Academic Publishers, Dordrecht, pp 143-238
Hodek I, Michaud JP (2008) Why is Coccinella septempunctata so successful? Eur J Entomol 105:1-12
Huelsman MF, Kovach J, Jasinski J, Young C, Eisley N (2002) Multicolored Asian ladybird beetle (Harmonia axyridis) as a nuisance pest in households in Ohio. In: Jones SC, Zhai J, Robinson WH (eds) Proceedings of 4th international conference on urban pests, pp 234-250
Iperti G, Bertand E (2001) Hibernation of Harmonia axyridis (Coleoptera: Coccinellidae) in south-eastern France. Acta Soc Zool Bohem 65:207-210
Jiang WH, Pan XH, Liu JX, Liu LB (2007) Studies on the type of spot in the wings of Harmonia axyridis (Pallas) in Baoding. Hebei J For Orchard Res 22:198-202

Jing Y, Zhang YJ, Ma DY (2001) Studies of the types of spots in the wings of Harmonia axyridis (Pallas) in Shanxi province. J Shanxi Agric Univ 3:230-232
Kajita Y, Takano F, Yasuda H, Evans EW (2006) Interactions between introduced and native predatory ladybirds (Coleoptera: Coccinellidae): factors influencing the success of species introductions. Ecol Entomol 31:58-67
Kenis M, Roy HE, Zindel R, Majerus MEN (2008) Current and potential management strategies against Harmonia axyridis. BioControl 53:235-252
Kidd KA, Nalepa CA, Day ER, Waldvogel MG (1995) Distribution of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in North Carolina and Virginia. Proc Entomol Soc Wash 97:729-731
Koch RL (2003) The multicolored Asian lady beetle, Harmonia axyridis: a review of its biology, uses in biological control, and non-target impacts. J Insect Sci 3:32. http://www. insectscience.org/3.32/
Kovach J (2004) Impact of multicolored Asian lady beetles as a pest of fruit and people. Am Entomol 50:159-161
Labrie G, Coderre D, Lucas E (2008) Overwintering strategy of multicolored Asian lady beetle (Coleoptera: Coccinellidae): cold-free space as a factor of invasive success. Ann Entomol Soc Am 101:860-866
Lombaert E, Malausa T, Devred R, Estoup A (2008) Phenotypic variation in invasive and biocontrol populations of the harlequin ladybird, Harmonia axyridis. BioControl 53:89-102
Majerus TMO, Majerus MEN, Knowles B, Wheeler J, Bertrand D, Kuznetzov VN, Ueno H, Hurst GDD (1998) Extreme variation in the prevalence of inherited malekilling microorganisms between three populations of Harmonia axyridis (Coleoptera: Coccinellidae). Heredity 81:683-691
Majerus MEN, Strawson V, Roy H (2006) The potential impacts of the arrival of the harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), in Britain. Ecol Entomol 31:207-215
Marshall SA (2006) Insects: their natural history and diversity. Firefly Books Ltd, Buffalo
McClure MS (1987) Potential of the Asian predator, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), to control Matsucoccus resinosae bean and godwin (Homptera: Margarodidae) in the United States. Environ Entomol 16:224-230
Michaud JP (2002) Invasion of the Florida citrus ecosystem by Harmonia axyridis (Coleoptera: Coccinellidae) and asymmetric competition with a native species, Cycloneda sanguinea. Environ Entomol 31:827-835
Michaud JP, Grant AK (2004) Adaptive significance of sibling egg cannibalism in Coccinellidae: comparative evidence from three species. Ann Entomol Soc Am 97:710-719
Mizell RF (2007) Impact of Harmonia axyridis (Coleoptera: Coccinellidae) on native arthropod predators in pecan and crape myrtle. Fla Entomol 90:524-536
Nalepa CA, Kidd KA, Ahlstrom KR (1996) Biology of Harmonia axyridis (Coleoptera: Coccinellidae) in winter aggregations. Ann Entomol Soc Am 89:681-685
Nalepa CA, Kidd KA, Hopkins DI (2000) The multicolored Asian lady beetle (Coleoptera: Coccinellidae): orientation to aggregation sites. J Entomol Sci 55:150-157

Nalepa CA, Kennedy GG, Brownie C (2004) Orientation of multicolored Asian lady beetles to buildings. Am Entomol 50:165-166
Nalepa CA, Kennedy GG, Brownie C (2005) Role of visual contrast in the alighting behavior of Harmonia axyridis (Coleoptera: Coccinellidae) at overwintering sites. Environ Entomol 34:425-431
Obata S (1986) Determination of hibernation site in the ladybird beetle, Harmonia axyridis Pallas (Coleoptera, Coccinellidae). Kontyu 54:218-223
Ormsby T, Napoleon EJ, Burke R, Groeesl C, Bowden L (2004) Getting to know ArcGIC desktop. ESRI Press, Redlands, p 380
Osawa N (2001) The effect of hibernation on the seasonal variations in adult body size and sex ratio of the polymorphic ladybird beetle Harmonia axyridis: the role of thermal melanism. Acta Soc Zool Bohem 65:269-278
Osawa N (2002) Sex-dependent effects of sibling cannibalism on life history traits of the ladybird beetle Harmonia axyridis (Coleoptera: Coccinellidae). Biol J Linn Soc 76:349-360
Pell JK, Baverstock J, Roy HE, Ware RL, Majerus MEN (2008) Intraguild predation involving Harmonia axyridis: a review of current knowledge and future perspectives. BioControl 53:147-168
Sakurai H, Kumada Y, Takeda J (1993) Seasonal prevalence and hibernating-diapause behavior in the lady beetle Harmonia axyridis. Res Bull Fac Agric Gifu Univ 58:51-55
Schaefer PW (2004) Winter aggregation of Harmonia axyridis (Coleoptera: Coccinellidae) in a concrete observation tower. Entomol News 114:23-28
Soares AO, Borges I, Borges PAV, Labrie G, Lucas E (2008) Harmonia axyridis: what will stop invader? BioControl 53:127-145
Tanagishi K (1976) Hibernation of the lady beetle, Harmonia axyridis. Insectarium 13:294-298
Wang S, Michaud JP, Zhang RZ, Zhang F, Liu SA (2009) Seasonal cycles of assortative mating and reproductive behaviour in polymorphic populations of Harmonia axyridis in China. Ecol Entomol 34:483-494
Watanabe M (2002) Cold tolerance and myo-inositol accumulation in overwintering adults of a lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae). Eur J Entomol 99:5-9
Williamson M (1996) Biological invasions. Chapman and Hall, London
Yarbrough JA, Amstrong JL, Blumberg MZ, Phillips AE, McGahee F, Dolen WK (1999) Allergic rhinoconjunctivity caused by Harmonia axyridis (Asian lady beetle, Japanese beetle, or lady bug). J Allergy Clin Immunol 104:704-709
Yuan RC, Zhang FM, Wen GZ, Yu M, Wang XQ, Ma FC (1994) Investigation and research about the polymorphism of Harmonia axyridis in Changbai mountain of Jilin. Agric Sci 4:45-54
Zenyogi S (2008) Prediction of the time of flight for aggregation of Harmonia axyridis (Coleoptera: Coccinellidae) in late autumn based on the concept of accumulation of exposure to low temperature. Jpn J Entomol 11:159-167
Zhao J, Yu LY, Li M, Zheng FQ, Zhang F, Xu YY (2008) Seasonal variation in cold tolerance of the multicolored
ladybeetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) adults. Acta Entomol Sin 51:1271-1278
Zhao J, Chen ZZ, Qu JJ, Zhang F, Yin XC, Xu YY (2010) Responses of Harmonia axyridis (Pallas) (Coleoptera:

Coccinellidae) adults to cold acclimation and the related changes of activities of several enzymes in their bodies. Acta Entomol Sin 53:147-153

[^0]: Handling Editor: Arne Janssen.
 S. Wang • F. Zhang • X. J. Guo

 Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
 J. P. Michaud (\boxtimes)

 Department of Entomology, Agricultural Research Center-Hays, Kansas State University, Hays, KS, USA
 e-mail: jpmi@ksu.edu
 X. L. Tan

 Plant Protection College, Northwest Agriculture and Forestry University, Yangling, Shanxi, China

[^1]: Population was recorded as the number of year-round residents in a village, obtained from the most recent local government records

