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Vertically transmitted bacterial symbionts are
common in arthropods. However, estimates of
their incidence and diversity are based on studies
that test for a single bacterial genus and often only
include small samples of each host species.
Focussing on ladybird beetles, we collected large
samples from 21 species and tested them for four
different bacterial symbionts. Over half the
species were infected, and there were often
multiple symbionts in the same population. In
most cases, more females than males were
infected, suggesting that the symbionts may be
sex ratio distorters. Many of these infections
would have been missed in previous studies as
they only infect a small proportion of the popu-
lation. Furthermore, 11 out of the 17 symbionts
discovered by us were either in the genus
Rickettsia or Spiroplasma, which are rarely
sampled. Our results suggest that the true inci-
dence and diversity of bacterial symbionts in
insects may be far greater than previously thought.
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1. INTRODUCTION
Symbiotic bacteria that are transmitted vertically from
mother to offspring are common among arthropods.
Some of these associations are essential for host
survival and can persist for millions of years (Chen
et al. 1999). Some are facultative mutualists, such as
symbionts that make their hosts resistant to parasitoids
(Oliver et al. 2003). Others manipulate host reproduc-
tion to enhance their transmission, for example by
distorting the host’s sex ratio towards females, the sex
that will transmit them to future generations. The
discovery that symbionts in the genus Wolbachia infect
approximately 17% of insect species (Werren et al.
1995) prompted more surveys of bacterial diversity
in arthropods. These studies confirmed the original
finding that Wolbachia is common, found that
other symbionts such as Cardinium are widespread
(Zchori-Fein & Perlman 2004), and revealed that
many Wolbachia strains infect only a small proportion
of the host population (Jiggins et al. 2001).
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Current knowledge of symbiont diversity may be

unreliable. Previous surveys have generally tested small

samples of many species for just a single bacterial taxon

(Werren et al. 1995; Zchori-Fein & Perlman 2004).

This approach provides little information about low

prevalence bacteria or the number of different sym-

bionts harboured by each species. Other studies have

surveyed only a few host species, preventing assessment

of interspecific diversity (Haynes et al. 2003). Screens

have also tested primarily for Wolbachia or Cardinium,

whereas the diversity of symbiotic associations is

probably far greater. Although it is more time consum-

ing, testing large samples of each host species for a

range of bacteria is necessary to accurately assess

symbiont diversity both within single species and

between them.

We investigated the diversity of bacterial symbionts

in ladybird beetles (Coccinellidae). Ladybirds are

particularly predisposed to male-killing bacteria as they

lay their eggs in clutches and sibling cannibalism is

common (Hurst & Jiggins 2000). Male-killers are

bacteria that kill male hosts as embryos. As males rarely

transmit vertically inherited symbionts, they provide no

benefit to the bacteria. Male-killers can invade popu-

lations if females benefit when their brothers from the

same brood are killed. Benefits include reduced sibling

competition, inbreeding avoidance, evading cannibal-

ism by brothers and opportunities to consume male

eggs. Since these factors are determined by host

ecology, male-killer distribution is thought to be driven

by ecological parameters.

In previous studies, ladybird male-killers were

identified by detecting skewed offspring sex ratios and

then testing for the presence of bacteria (Hurst et al.
1996). This approach has revealed male-killers from

four different bacterial groups (Wolbachia, Rickettsia,

Spiroplasma and Flavobacteria species) in 10 species

of ladybird (Majerus 2006). Current records report

that Wolbachia infects one species; Rickettsia and

Spiroplasma each infect three species; while five

species harbour Flavobacteria. However, the diversity

of male-killers in ladybirds remains unclear. Typically,

only small samples have been screened as breeding is

labour intensive, so low prevalence male-killers will

remain undetected. Furthermore, there is a publi-

cation bias towards reporting positive results. In this

study we used PCR to screen large samples of

21 different species for the four bacterial groups

known to cause male-killing in ladybirds, giving us a

unique picture of symbiotic diversity.
2. MATERIAL AND METHODS
(a) Ladybirds

Twenty-one ladybird species were collected from the locations in
table 1 by beating vegetation while holding a collection tray
underneath or sweeping vegetation with nets (thereby eliminating
visual bias in collection rates). The ladybird species sampled solely
reflects their ease of collection. All species samples contained 20
females or more, providing a 90% chance of detecting infections at
12% prevalence or over; in most cases considerably larger sample
sizes were used.

Sex was determined using morphology of the posterior abdomi-
nal tergite or the presence/absence of a sclerotized sipho seen with
an underlighted microscope; criteria were verified by genital
dissection. Sterile blades were used to remove an abdominal section
for DNA extraction and the remainder was preserved in ethanol.
This journal is q 2007 The Royal Society



Table 1. Bacterial symbionts detected in ladybird beetle populations. (�p!0.05, ��p!0.01 and ���p!0.001 significance
values are uncorrected for multiple tests.)

species name locationa
sample
size sex ratiob

sex ratiob

uninfected bacteria
prevalence
in femalesc

prevalence
in malesc

(a) infected
Adalia 2-punctatad Edinburgh, UK 84 0.27��� 0.35� Spiroplasma 0.28 0.04�

Rickettsia 0.07 0.00
Queenstown,

New Zealand
70 0.50 0.56 Spiroplasma 0.29 0.09

Anisosticta 19-punctatad Essex, UK 46 0.37 0.50 Spiroplasma 0.41 0.00��

Ploen, Germany 123 0.46 0.46 uninfected
Adalia 10-punctatad Edinburgh, UK 112 0.52 0.52 Rickettsia 0.02 0.00

Piedmonte, Italy 46 0.41 0.44 Rickettsia 0.11 0.00
Coccinella 7-punctata Dunwich and

Edinburgh, UK
115 0.47 0.49 Wolbachia 0.05 0.00

Subcoccinella 24-punctata Braintree, UK 220 0.51 0.46 Rickettsia 0.04 0.15�

Scymnus frontalis UK and Germany 35 n/a Rickettsia 0.24 0.10
Halyzia sedecimguttata Ploen, Germany 260 0.38��� 0.39��� Rickettsia 0.01 0.00

Wolbachia 0.02 0.00
Somerset, UK 24 0.50 0.50 uninfected

Calvia quattuordecimguttata Ploen, Germany 57 0.49 0.49 Rickettsia 0.03 0.00
Wolbachia 0.00 0.04

Chilocorus bipustulatus Verona, Italy 20 0.40 0.41 Wolbachia 0.08 0.00
Spiroplasma 0.08 0.13

Hathersage, UK 15 0.40 0.40 uninfected
Rhyzobius (Rhizobius) litura Ploen, Germany 70 0.37� 1�� Rickettsia 0.84 0.62�

Wolbachia 0.89 0.15���

Thetford, UK 6 n/a uninfected
Coccidula rufa Ploen, Germany 49 0.35� 0.80 Rickettsia 0.59 0.41

Wolbachia 0.78 0.18���

(b) uninfected
Aphidecta obliterata Edinburgh, UK 44 0.30��

Exochomus quadripustulatus Thetford, UK 95 0.63�

Tytthaspis 16-punctata Thetford, UK 53 0.55
Propylea 14-punctata various, UK 52 0.54
Anatis ocellata Edinburgh and

Thetford, UK
65 0.31�

(from pupa) Thetford, UK 111 0.45
Myzia oblongoguttata Edinburgh, UK 85 0.49
Coccinella hieroglyphica Balmoral, UK 83 0.55
Harmonia 4-punctata Thetford, UK 33 0.30�

Coccinella miranda
Wollaston

Tenerife, Spain 146 0.53

Myrha octodecimguttata Edinburgh, UK 30 0.37
Murcia, Spain 67 0.27���

a Populations where symbiont type, sex ratio or infection level did not significantly differ were pooled together.
b Proportion of males, deviations from a 1 : 1 sex ratio were tested using an exact binomial goodness of fit test.
c Difference in prevalence between males and females was tested using a exact test.
d Species where symbionts are already known to occur.
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(b) DNA extraction and PCR

DNA was extracted as in Jiggins & Tinsley (2005) or using
DNeasy columns for animal tissues (Qiagen, Valencia, CA).
Samples extracted using columns were pooled with five ladybirds
per column. The ribosomal DNA ITS region was amplified using
BD1 and 4S (von der Schulenburg et al. 2001) to verify
successful DNA extraction. Samples failing to yield a PCR
product were discarded. Samples were then tested for Wobachia
presence using wsp81f and wsp691r; Rickettsia using RSSUF and
RSSUR; Spiroplasma using HaIn1 (specifically targets Spiroplasma
ixodetis group) and MGSO; and Flavobacteria species using FL1
and FL2 (Tinsley & Majerus 2006). Positive bacterial controls
were used in all PCRs. Pooled samples that tested positive for
any bacteria were then extracted separately to measure bacterial
prevalence. Since accurate DNA extraction for individual lady-
birds in these samples cannot be confirmed, our bacterial
prevalence estimates are conservative. At least one PCR product
from each primer pair in each host species was sequenced to
verify its identity (L. Weinert 2006, unpublished data).
Biol. Lett. (2007)
3. RESULTS
(a) Symbiont diversity

We tested 2149 ladybirds from 21 different species for

the presence of four bacterial genera that are known

to cause male-killing in ladybirds (table 1). Over half

the species (11 out of 21) were infected with at least

one of the symbionts. Rickettsia was found in eight

species, Wolbachia in six and Spiroplasma in three

species. No species were infected with Flavobacteria.

The relative frequency of ladybird species infected by

each of the four bacteria was significantly different

from what has previously been found (c3
2Z10.3;

pZ0.016; previous work described in §1). On

average, each host species was infected by 0.8

different symbionts.
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Of the 11 infected species, six were infected by two
different symbionts and, in all cases, both bacteria
were found in a single population. These double
infections fell into two categories. In four of the
ladybird species, the two different bacteria never
infected the same individual. However, in Rhyzobius
(Rhizobius) litura and Coccidula rufa both singly and
doubly infected individuals were found.

(b) Bacterial prevalence

The bacterial prevalence was very variable, ranging
from 1 to 89%, with a median of 5%. There are
striking differences in the prevalence of symbionts in
males and females (table 1). Nine of the symbionts
occurred only in females, compared with one that was
only in males. Allowing a false discovery rate of 10%
to correct for multiple tests (Benjamini & Hochberg
1995), out of the 19 different infected populations,
five had a significantly higher bacterial prevalence in
females, whereas one population had a higher preva-
lence in males (populations of the same species with
significantly different prevalence treated separately).

Rhyzobius (Rhizobius) litura and C. rufa popu-
lations from Germany had much higher prevalence
levels than other species, with nearly all individuals
infected with Rickettsia, Wolbachia or both bacteria.
These populations were also unusual in containing
large numbers of infected males (although the preva-
lence is generally still highest in females).

(c) Population sex ratio

Of the 28 different populations of ladybirds, eight were
female biased and one was significantly male biased. If
the sex ratio is determined by male-killers, then the
number of uninfected females will be the same as the
number of uninfected males. If there is a large excess of
uninfected females, this suggests that there are other
factors biasing the sex ratio, such as undiscovered
male-killers. We tested whether the ratio of uninfected-
males to uninfected-females differed from 1 : 1
(table 1). Six out of 28 populations still had a significant
excess of uninfected females, and two had an excess of
uninfected males (10% false discovery rate).
4. DISCUSSION
Rickettsia, Wolbachia and Spiroplasma bacteria are all
common among ladybirds. This is the first time that the
incidence of Spiroplasma, Rickettsia or Flavobacteria in
insects has been studied extensively, and our results
suggest that some of these neglected groups of sym-
bionts may be as common as Wolbachia. Many of the
symbionts infect a small proportion of the population,
and would have been missed by studies that examine
only a few individuals of each species. It is therefore
probable that both the taxonomic diversity of symbionts
and the proportion of insect species infected by
symbionts are far greater than previously suspected.

Symbiont diversity may actually be even greater
than what our data suggest. In our largest samples,
we detected bacteria that infect less than 1% of
individuals; these would have been missed in our
smaller samples. Furthermore, we did not test for the
presence of all known symbiont taxa. The bacterial
Biol. Lett. (2007)
prevalence was also insufficient to explain the popu-
lation sex ratio biases observed. This suggests that
there may still be undiscovered sex ratio distorters
from different bacterial taxa. However, male ladybirds
suffer greater overwintering mortality than females,
which may also cause this pattern.

Why have these symbionts spread through ladybird
populations? In most cases, more females than males
were infected, suggesting that they are sex ratio
distorters. As all sex ratio distorters known in lady-
birds are male-killers, it is possible that our symbionts
are also male-killers. A surprising finding was that
many of the bacteria also occur at a lower frequency
in males. There have been few studies of whether
males can survive male-killer infection in the wild.
However, infected males survive at high temperatures
in Drosophila, which is most likely caused by reduced
bacterial density (Hurst et al. 2000). The widespread
occurrence of infected males in our dataset could
result from nuclear genes suppressing the male-killing
phenotype, or from environmental effects.

Single populations commonly harboured more
than one bacterial taxon. Theory predicts that this
will be rare unless negatively frequency-dependent
selection maintains the different bacteria (Randerson
et al. 2000). There is evidence that natural selection
maintains multiple male-killers in the ladybird Adalia
bipunctata (Jiggins & Tinsley 2005). The finding that
this pattern is common lends strength to the
hypothesis that bacterial symbionts may commonly be
maintained in populations either by negative fre-
quency-dependent selection or because different
strains are favoured in different populations.

The frequency with which the four symbionts
occur across different species of ladybird was signi-
ficantly different from that of previous studies of
male-killers in ladybirds, which probably reflects the
different screening methods. Interestingly, in previous
work Flavobacteria were the commonest male-killers,
while in our study they were absent. This could be
a consequence of different sampling strategies, if
Flavobacteria occur at a higher prevalence, or in
different ladybird species or geographical areas than
the other bacteria.

There is an unusual pattern of bacterial infection
in R. litura and C. rufa. These species have female-
biased population sex ratios, and their symbionts
occur predominantly in females, suggesting that they
are sex ratio distorters. They are, however, atypical of
male-killers. Up to 60% of males were infected,
suggesting that sex ratio distortion is inefficient. In
addition, many individuals were co-infected with
Wolbachia and Rickettsia: two different male-killers
that have never been reported from a single individual
before. One explanation is that there is partial
suppression of the male-killing phenotype.

In conclusion, intensive sampling has uncovered
widespread and extensive diversity of bacterial sym-
bionts within one insect clade. Our findings demon-
strate that the methods employed in previous studies
may be biasing the picture of symbiont diversity. Efforts
such as ours to uncover infection diversity both between
and within species may provide more information
about what determines symbiont distribution and how
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they spread through populations. We focused on a
group of beetles that are known to be predisposed to
male-killers, and further studies are needed to test if
our results can be generalized across all insects.

We thank the Wellcome Trust, the Royal Society and
NERC for funding, and Penny Haddrill for comments.
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