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Abstract. This is the first study to comprehensively address the phylogeny of the
tribe Oxypodini Thomson and its phylogenetic relationships to other tribes within the
staphylinid subfamily Aleocharinae. Using the hitherto largest molecular dataset of
Aleocharinae comprising of 4599 bp for representatives of 22 tribes, the Oxypodini are
recovered as non-monophyletic. Members of the tribe belong to three distantly related
lineages within the Aleocharinae: (i) the Amarochara group as sister clade to the tribe
Aleocharini, (ii) the subtribe Tachyusina within a clade that also includes the tribes
Athetini and Hygronomini, (iii) all other Oxypodini in a clade that also includes the
tribes Placusini, Hoplandriini and Liparocephalini. Based on the inferred phylogeny,
five subtribes of the Oxypodini are recognized: Dinardina Mulsant & Rey, Meoticina
Seevers, Microglottina Fenyes, Oxypodina Thomson and Phloeoporina Thomson.
The following changes in the classification of the Aleocharinae are proposed: (i)
Amarochara Thomson is removed from the Oxypodini and placed in the tribe
Aleocharini; (ii) the subtribe Taxicerina Lohse of the Athetini is reinstated as tribe
Taxicerini to include Discerota Mulsant & Rey, Halobrecta Thomson (both removed
from the Oxypodini) and Taxicera Mulsant & Rey; (iii) the subtribe Tachyusina
Thomson is excluded from the Oxypodini and provisionally treated as tribe Tachyusini;
(iv) the oxypodine subtribe name Blepharhymenina Klimaszewski & Peck is placed
in synonymy with the subtribe name Dinardina Mulsant & Rey.

Introduction the tarsal formula or the number of segments in the maxil-

lary and the labial palpi (Seevers, 1978). Recent phylogenetic

The staphylinid subfamily Aleocharinae - contains approxi- studies revised the concepts of some tribes (e.g. Ahn & Ashe,

mately 12000 described species classified into more than 50
tribes (Newton et al., 2000). This group of small beetles is dis-
tributed worldwide and occupies almost any terrestrial habitat
(Thayer, 2005).

The monophyly of the Aleocharinae is well supported by
morphological characters (Hammond, 1975; Ashe, 2005). In
contrast, the relationships within the subfamily are poorly
understood (Ashe, 2007). No phylogenetic study has compre-
hensively covered the aleocharine diversity at tribe and subtribe
levels. The traditional tribal classification (e.g. Bernhauer &
Scheerpeltz, 1926) is largely based on an intuitive assess-
ment of easily observable characters, such as, for example,
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2004; Elven et al., 2010, 2012). However, establishing a new
phylogeny-based classification of the Aleocharinae is difficult
due to the high diversity of the group.

The aleocharine tribe Oxypodini Thomson includes approx-
imately 2000 species and more than 150 genera (Newton &
Thayer, 2005). As currently accepted (e.g. Seevers, 1978;
Bouchard et al., 2011), the tribe can be defined only by a
combination of characters, each shared with at least one other
aleocharine tribe (Seevers, 1978). Within the Aleocharinae,
most oxypodines can be recognized by the tarsal formula
5-5-5 (in some genera 4-5-5, or 4-4-4), antennae with 11
antennomeres, the maxillary palpus without a pseudosegment,
and the aedeagus without an ‘athetine bridge’ (Seevers, 1978;
Newton et al., 2000).
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The subtribe level classification of the Oxypodini varies
from one author to another (Table 1). The most recent consen-
sus classification recognized six subtribes: the Aphytopodina
Bernhauer & Scheerpeltz that is endemic to New Zealand, and
the five widespread subtribes, Blepharhymenina Klimaszewski
& Peck, Dinardina Mulsant & Rey, Meoticina Seevers, Oxy-
podina Thomson and Tachyusina Thomson (Bouchard er al.,
2011). The largest subtribe, Oxypodina, is only poorly charac-
terized (Newton et al., 2000). Besides the type genus Oxypoda
and closely related genera, it also includes several genera that
cannot be placed in any other subtribe (Newton et al., 2000).
Seevers (1978) further divided the Oxypodina into six informal
groups, most of which lack a distinct diagnostic character.

The position of the subtribe Tachyusina has always been
controversial. Based on a similar body shape, Tachyusa and
closely related genera have been originally treated as members
of the Falagriini (Lohse, 1974). Seevers (1978) demonstrated
that they lack the important diagnostic characters of that tribe.
Since then, the Tachyusina have been treated as members of
either the Athetini (Sawada, 1987; Pace, 2006), Oxypodini
(Seevers, 1978; Newton & Thayer, 1992; Newton et al.,
2000), or as a separate tribe Tachyusini (Lohse, 1989; Pasnik,
2010). Pasnik (2010) studied the phylogeny of the Tachyusina
(treated as tribe) based on morphological characters. The
Tachyusini, represented by 28 genera, were recovered as
sister clade to the six non-tachyusine Oxypodini, but with low
support (Pasnik, 2010).

The phylogenetic relationships of the Oxypodini have never
been studied comprehensively. In previous studies, the tribe
has either been represented by the type genus Oxypoda only,
or included one or two additional oxypodine genera (e.g. Stei-
dle & Dettner, 1993; Maus et al., 2001; Ahn & Ashe, 2004;
Thomas, 2009; Elven et al., 2010, 2012). The results of the
phylogenetic analyses were largely dependent on the methods
used in the respective studies, and in most of the studies
including more than one oxypodine species the tribe appeared
non-monophyletic (Steidle & Dettner, 1993; Maus et al.,
2001; Thomas, 2009). However, in all the previous studies
the oxypodine taxon sampling was inadequate to test the
monophyly of the tribe. In a morphology-based study of Ale-
ocharinae that included 41 genera and 12 aleocharine tribes,
Muona (1997) found the Oxypodini to be polyphyletic. Unfor-
tunately, no details were published and it is not clear which
additional oxypodine genera besides Oxypoda were included.

The most comprehensive molecular phylogeny of ale-
ocharine beetles so far was presented by Elven er al. (2012).
The Oxypodini were represented by the genera Oxypoda and
Halobrecta. Oxypoda was recovered as sister group of the Pla-
cusini, whereas Halobrecta was a sister group of the Taxicerina
(Athetini). However, the relationships among these two clades
and several other tribes remained unresolved (Elven et al.,
2012).

In this study we present the first comprehensive molecular
phylogeny of the Oxypodini. We test the monophyly of the
tribe and infer its relationships to other aleocharine tribes. We
also test hypotheses regarding the groups previously proposed
within the Oxypodini and identify the main lineages of the

tribe. Based on the phylogenetic analyses, we also revise the
classification of the Oxypodini.

Material and methods
Taxon sampling

A total of 117 specimens belonging to 110 species from
87 genera were sampled for this study (Table 2). The tribe
Oxypodini was represented by 56 species assigned to 39
genera, covering all but four previously proposed suprageneric
groups, even those with invalid, unavailable or informal names
(Table 1). The type genus Oxypoda was represented by four
species, two of them from the nominotypical subgenus.

The outgroup included 54 species from 48 genera, among
them 44 species from 21 other tribes of Aleocharinae, and two
genera with uncertain tribal affiliation: Stenectinobregma and
one unidentified aleocharine genus (labelled as Aleocharinae
Genus 1). As more distant outgroup taxa, we included repre-
sentatives of five other subfamilies of the Tachyporine group
(Lawrence & Newton, 1982), i.e. Tachyporinae, Habrocerinae,
Olisthaerinae, Phloeocharinae and Trichophyinae.

Molecular markers

A set of seven phylogenetically informative genes was
targeted in this study. The nuclear 18S rRNA (/8S) and
28S rRNA (28S) genes were included to infer the deeper
phylogenies. We sequenced the internal part of /8S (see
Whiting et al., 1997) and the commonly used 5 region of
28S. In addition, we included a partial sequence of the
nuclear topoisomerase I (7P) gene. It was shown to be
informative in Coleoptera from genus to family level (Wild
& Maddison, 2008) and has been successfully applied to
staphylinid beetle systematics (Chatzimanolis et al., 2010).
Two mitochondrial regions yielding partial sequences of the
mitochondrial 16S rRNA (/6S), cytochromoxidase subunit I
(COI) and II (CO2), and NADH dehydrogenase subunit I
(ND1) genes were selected to infer the more shallow nodes.

DNA extraction, PCR amplification, and sequencing

Genomic DNA was extracted from either the head, or
the head and prothorax, following the protocol of the
Qiagen DNeasy Blood & Tissue Kit (QIAGEN) with minor
modifications as described by Elven ef al. (2010). Most of
the voucher specimens and all DNA extracts were deposited
in the Natural History Museum, University of Oslo. Some
voucher specimens are deposited in the Natural History
Museum of Denmark, Copenhagen, and the Field Museum,
Chicago. Full label information and depositories are listed
in Table S1.

PCR was performed in a 25 uL reaction volume using
25mMm MgCly, 1X PCR buffer II (Applied Biosystems),

© 2013 The Royal Entomological Society, Systematic Entomology, 38, 507-522
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0.8 mm GeneAmp dNTP Mix (Applied Biosystems), 0.5 um of
each primer, 1U of ABI AmpliTag DNA Polymerase (Applied
Biosystems) and 3 uL of the respective genomic DNA extract.
If target genes were difficult to amplify, either 1.1 mg DMSO,
or 0.4 ug BSA were added. For difficult amplifications of /65,
concentrations of MgCl, PCR buffer II, and dNTP Mix were
changed as described by Elven et al. (2010).

The general PCR profile consisted of an initial denaturation
step at 94°C for 30, followed by 30 cycles at 94°C for 1 min,
45-67°C for 30s, and 72°C for 2min, and a final extension
step of 10 min at 72°C. TP was amplified using the nested PCR
approach described by Wild & Maddison (2008). The targeted
regions of 285, COIl and CO2 were amplified and sequenced
in overlapping fragments. All primers used for amplification
and amplification strategies are listed in Table S2. For 31 spec-
imens, 1 or 2 of the targeted markers could not be amplified.

The PCR products were purified with ExoSAP-IT (Strata-
gene), and sequenced either externally by the ABI-Lab at
the Centre for Ecological and Evolutionary Synthesis (CEES),
University of Oslo, or at the molecular lab of the Natural His-
tory Museum, University of Oslo using an ABI Prism 3130
Genetic Analyser (Applied Biosystems). All fragments were
sequenced in both directions. The GenBank accession numbers
of the sequences are provided in Table 2.

Sequence alignment

The obtained nucleotide sequences were edited and assem-
bled into contigs in CodonCode Aligner v3.0 (CodonCode Cor-
poration). Alignments were performed in MEGA v4.0 (Tamura
etal., 2007). Alignment of the protein-coding sequences
according to the amino acid translation was straightforward.
Ribosomal sequence alignments were optimized by eye using
published secondary structures as guide. Sequences of 28§
were aligned using secondary structure models of Apis mel-
lifera (Gillespie et al., 2006) and Diabrotica undecimpunc-
tata howardi (Gillespie et al., 2004). For the /8S and 16S
sequences we followed the secondary structure models of
Apis mellifera (Gillespie et al., 2006) with modifications for
Staphylinidae suggested by Elven et al. (2010). The leucine 1
and leucine 2 tRNA genes were omitted from the alignment as
they contribute only a very small number of parsimony infor-
mative characters. Ambiguously aligned regions were excluded
from the downstream analyses.

Phylogenetic analyses

Two different datasets were used for the phylogenetic
analyses. The first (=full dataset) included all seven genes
and all 117 specimens, with 31 specimens missing 1 or 2
loci. The second (=reduced dataset) was restricted to the
86 specimens with complete sequence information and six
genes (ND1 was excluded as one important tribe represented
by a single specimen was lacking its sequence). Maximum
parsimony (MP), maximum likelihood (ML) and Bayesian
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(BI) analyses were performed on both datasets. Several ML
analyses were also performed using alternative partitioning of
the full dataset (see below), or with one of the seven genes
excluded (except for the very short NDI sequences). MP
analyses of the reduced dataset were also performed with third
codon positions of the protein coding genes removed because
of the high saturation at those positions as demonstrated by
Elven et al. (2010) for a similar dataset.

MP analyses were performed in PAUP v4.0b10 (Swofford,
2002) using an heuristic search and 1000 initial addition
sequences. All bases were weighted equally and gaps were
treated as missing data. Bootstrap support (BS) was calculated
with 1000 pseudoreplicates and 10 addition sequences per
replicate.

Best-fit models for maximum likelihood (ML) and Bayesian
(BI) analyses were calculated in MrModeltest2 (Nylander,
2004) using the Akaike information criterion (AIC). Due
to ambiguous alignment and subsequent exclusion of most
RNA loop regions, the remaining parts of RNA sequences
were not partitioned in loop and stem regions. Both nuclear
RNA sequences were included in a single partition. In ML
and BI analyses, the following eight partitions were used
(standard partitioning scheme): nuclear RNA (/8S +289),
first, second, and third codon positions of the nuclear
TP gene, mitochondrial RNA, and first, second, and third
codon positions of the mitochondrial protein-coding genes
(COI 4+ CO2 +ND1I). The GTR + G model was applied to the
third codon positions of the mitochondrial protein-coding genes
and the GTR + I+ G model was applied to all other partitions.
In addition, two alternative partitioning schemes were used in
ML analyses of the full dataset: (i) the same as above, but
with /8S and 28S in separate partitions; (ii) partitioning by
the seven genes: 18S, 28S, TP, 16S, NDI, COI and CO2.

ML analyses were carried out in RAXML7.0,3 (Stamatakis,
2006) using the fast ML method under the GTR model.
Bootstrap support was calculated using 1000 replicates with
every fifth tree used as starting point for subsequent ML
optimization on the original dataset.

BI analyses were performed in MrBayes 3.1 (MPI version)
(Ronquist & Huelsenbeck, 2003) with four independent runs,
each having three heated and one cold chain. Analyses were
run for 43 million generations with trees sampled every 1000
generations. The first 25% of each run was discarded as
burn-in. An average standard deviation of split frequencies
< 0.05 was used as indication of convergence, and was reached
between 4 and 5 million generations. Convergence among the
runs was assessed using Tracer v1.5 (Rambaut and Drummond,
2007). All MP and BI analyses were performed on the
Bioportal platform at the University of Oslo.

Results
Sequence data

The concatenated alignment consisted of 5446 bp, of which
847 ambiguous positions were excluded. Of the remaining
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4599 bp, 2321 were constant and 402 variable, but parsimony
uninformative. Details on the alignment are provided in
Table S3.

There were no indels in the alignment of the protein-
coding genes. Length variation was observed in almost all
loop regions of the rDNA sequences, mainly among taxa
representing different subtribes or tribes. These regions were
thus excluded. The final sequence alignment is provided in the
Supplement.

Phylogenetic analyses

The MP analysis of the full dataset yielded a bootstrap
consensus tree with only the intra-subtribal relationships
statistically well supported (Figure S1). The inter-subtribal
and inter-tribal relationships remained unresolved. Excluding
the specimens with incomplete sequence information did not
improve the resolution at higher taxonomic levels (Figure S2).
When the third codon positions of the protein-coding
sequences of the reduced dataset were excluded, the MP
analysis yielded a bootstrap consensus tree with a generally
higher statistical support for both the intra-subtribal and
inter-tribal relationships (Fig. 1).

The model-based analyses (BI and ML) of the full
dataset yielded largely congruent trees with many inter-tribal
relationships statistically well supported (Fig. 2). However,
some of the nodes were well supported only in the BI analysis.
Incongruence between the ML and BI trees was restricted to a
few nodes weakly supported in both analyses.

ML analyses with one of the eight genes excluded yielded
trees with the same well supported clades as obtained by the
ML analysis of the full dataset. For some weakly supported
nodes, the support did not improve or, depending on which
gene was excluded became weaker (Figure S3). Standard and
alternative partitioning schemes resulted in largely similar ML
trees (Fig. 2 and Figures S4, S5). Except for one additional
clade obtained with moderate support in the ML analysis
partitioned by gene, the three trees differed only slightly in
support values, and differed in topology only at some weakly
supported nodes.

The BI analysis of the reduced dataset yielded a tree very
similar to that obtained for the full dataset concerning the
clades discussed below (Figure S6). Furthermore, reducing the
dataset improved support for quite a few clades, while only
slightly reducing support of others. Also, the ML tree for the
reduced dataset was largely congruent with the BI tree. As
in the analyses of the full dataset, incongruence was mostly
restricted to a few nodes with low statistical support in both
analyses.

Phylogenetic relationships of the Oxypodini

We refer in the following to the results of the BI and ML
analyses of the full dataset (Fig. 2). Clades are labelled from
the base of the tree towards the tips and in the order they are

described below. We refer to the MP analyses only when their
results support clades not recovered in the BI and ML analyses.

The ‘higher’ Aleocharinae are well supported in both the
BI and the ML analyses (PP 1.00, BS 87). The tribe Oxypo-
dini is recovered as non-monophyletic, as its members con-
tribute to different lineages within the ‘higher’ Aleocharinae.
Amarochara and two allied oxypodine genera (= Amarochara
group; PP 1.00, BS 100) form the monophyletic clade A
together with the tribe Aleocharini (PP 1.00, BS 99). The
remaining lineages of the Oxypodini are scattered within
the clades B and C. Clade B (PP 1.00) includes Halo-
brecta, all members of the oxypodine subtribe Tachyusina,
and the tribes Athetini, Falagriini, Geostibini, Hygronomini,
Lomechusini, Myllaenini, Oxypodinini, Paglini, Pronomaeini
and Pygostenini, the subtribe Homalotina of the tribe Homa-
lotini, and the genus Stenectinobregma. Within clade B, Halo-
brecta forms a monophyletic group together with the athetine
genus Taxicera (clade D; PP 1.00, BS 100). More apically, the
Tachyusina are nested within clade E (PP 1.00, BS 84) that also
includes the tribes Athetini and Hygronomini. The basal rela-
tionships within clade E are unresolved. The Tachyusina are
recovered as monophyletic (PP 1.00, BS 96) and most nodes
within the clade are resolved and well supported.

The majority of oxypodine species included in this study
form clade C together with the tribes Hoplandriini, Liparo-
cephalini, and Placusini (PP 1.00). The basal relationships
within clade C are unresolved. Clade C consists of five
branches with a single terminal taxon [Phloeopora, Myrmo-
biota (both Oxypodini), Hoplandria (Hoplandriini), Placusa
(Placusini), one aleocharine genus with unknown tribe assign-
ment (Aleocharinae Genus 1)], and four well-supported sub-
clades (F, G, H and I).

Subclade F (PP 1.00) includes most members of the
subtribe Oxypodina. It further comprises two major lineages
(clades J and K) and two branches with a single species each
(Oxypoda opaca, Neothetalia canadiana). In MP analysis
of the full dataset and in ML analysis partitioned by gene,
O.opaca and N. canadiana are recovered as sister taxa (BS
84 and 68; Figures S1 and S5, respectively). Clade J (PP
1.00, BS 80) includes two sister clades, one consisting of
Ocalea, Neothetalia nimia and Isoglossa (PP 1.00, BS 100),
and the other of Gnathusa and Mniusa (PP 1.00, BS 100).
Clade K (PP 1.00, BS 98) consists of Oxypoda (excluding
O.opaca) and eight other genera. Oxypoda is recovered as
non-monophyletic. Oxypoda opaca branched off prior to
clade K, and within clade K, Oxypoda lentula is the sister
of Ocyusa (PP 1.00, BS 69). The latter two contribute to
clade L (PP 1.00, BS 65) that also includes the genera
Oreuryalea, Calodera, Devia, and further a monophyletic
lineage Illyobates + Tetralaucopora (PP 1.00, BS 99).

The second well-supported subclade within clade C is
the monophyletic subtribe Meoticina (clade G; PP 1.00, BS
100). Within clade G, Meotica is the sister to the remaining
Meoticina (PP 1.00, BS 85), with Apimela as sister to the clade
including Alisalia, and Bamona + one unidentified meoticine
genus (labelled as Meoticina Genus 1). In the MP analysis
of the full dataset, Meotica+ Apimela (BS 64) is the sister
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Phloeocharis subtilissima
Habrocerus capillaricornis
Derops uenoi
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70

7

"Higher'Aleocharinae

Fig. 1. Bootstrap consensus tree from the MP analysis of the reduced dataset with third codon positions excluded. Clade labels are in circles.
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Bootstrap support values >50 are indicated above branches. Clade names follow the newly proposed classification.
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Fig. 2. Majority rule consensus tree from the BI analysis of the full dataset. Clade labels are in circles. Posterior probabilities (PP > 0.94) from the
BI analysis and bootstrap support values (BS > 50) from the ML analysis are indicated above branches as PP/BS. Lower branch support (PP < 0.94

or BS <50) is indicated with a dash.

Clade names follow the newly proposed classification.
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clade to Alisalia + Bamona + Meoticina Genus 1 (BS 56)
(Figure S1).

The third well-supported subclade within clade C (clade
H; PP 1.00) includes the monophyletic tribe Liparocephalini
as sister to the clade that includes the oxypodine genera
Blepharhymenus, Parocalea, Thiasophila, and Dinarda (clade
M; PP 1.00, BS 95). Further, Parocalea + (Thiasophila +
Dinarda) form the well-supported clade N (PP 1.00, BS 74).
The relationships between Blepharhymenus and clade N are
unresolved.

The fourth well-supported subclade within clade C includes
the two oxypodine genera Haploglossa and Crataraea (clade
I; PP 1.00, BS 100).

Discussion
Phylogeny of the Oxypodini

Using a DNA-based approach, the traditional concept of the
tribe Oxypodini is firmly rejected. With 16 out of 20 formerly
proposed suprageneric groups of the Oxypodini represented
in the analyses (15 by their type genera; Table 1), this is
the first comprehensive phylogenetic study that addresses the
phylogeny of the tribe.

The phylogenetic analyses recovered members of the tribe
in three different lineages of the Aleocharinae: (i) Amarochara
and two related unidentified species: as a sister clade to
the tribe Aleocharini (clade A); (ii) the oxypodine subtribe
Tachyusina: as a member of clade E together with the tribes
Athetini and Hygronomini; (iii) all remaining oxypodine gen-
era, among them the type genus Oxypoda, in clade C also com-
prising the tribes Hoplandriini, Liparocephalini and Placusini.

Amarochara clade

Amarochara (represented by two species) and two related
unidentified species (that may be congeneric with Amarochara)
are recovered as a well-supported sister group to the tribe
Aleocharini (clade A; Figs 1 and 2). Traditionally, the
Aleocharini have been separated from the Oxypodini by the
presence of a pseudosegment in both the maxillary and the
labial palpi (Fenyes, 1918; Lohse, 1974; Seevers, 1978).
However, Lohse (1974) also observed a pseudosegment in
the maxillary palpi of some genera traditionally placed in
the Oxypodini. A pseudosegment is also present in the
tribes Hoplandriini (Fenyes, 1918; Newton et al., 2000) and
Himalusini (Klimaszewski et al., 2010), both recovered as
distantly related to the Aleocharini (Fig. 2). In contrast,
Amarochara shares a strongly emarginate, sulcate apex
of antennomere 1 with members of the Aleocharini, i.e.
Tetrasticta and Paraleochara (Cameron, 1939). A similar apex
of antennomere 1 is also present in two other oxypodine
genera, Porocallus and Paramarochara (Cameron, 1952;
Assing, 2001), indicating that they may be closely related
to the Aleocharini, too. Future studies based on a wider
sampling of genera traditionally placed in the Aleocharini
may address this issue in more detail. For now, rather than
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establishing a separate tribe for Amarochara and further
proliferating aleocharine tribes, we transfer Amarochara to the
tribe Aleocharini.

Halobrecta

Halobrecta is recovered as the sister to Taxicera (clade
D; Figs 1 and 2). Taxicera was recently placed, together
with Discerota, in the subtribe Taxicerina of the Athetini
(Lohse, 1989; Smetana, 2004; Kapp, 2005). Brundin (1943)
and Kapp (2005) considered a close relationship between
Halobrecta and Taxicera, but did not treat Halobrecta as
a member of the Taxicerina. Elven ef al. (2010) removed
Halobrecta from the Athetini and provisionally assigned it
to the Oxypodini. More recent analyses by Elven eral.
(2012) recovered Halobrecta as sister to Discerota outside the
clade that included, among others, the Athetini. However, the
taxon sampling was insufficient for resolving the systematic
position of Halobrecta and Discerota within the Aleocharinae.
Corroborating the results of Elven et al. (2012), the present
study rejects a close relationship of Halobrecta + Taxicera to
either the Oxypodini or the Athetini. We raise the rank of
Taxicerina to a tribe and expand it to include Halobrecta.
Adam & Hegyessy (2001) already used the family group name
Taxicerini as tribe, but without providing any phylogenetic
justification. The tribe Taxicerini can be recognized by the
tarsal formula 4-5-5, the distinct shape of ligula (Gusarov,
2004), spermatheca (Gusarov, 2004; Kapp, 2005) and aedeagus
(Gusarov, 2004; Kapp, 2005), the latter lacking the athetine
bridge. The proposed tribe includes the three genera Taxicera,
Discerota and Halobrecta.

Tachyusina clade

Most of the recent studies have treated the Tachyusina
as subtribe of the Oxypodini (Seevers, 1978; Muona, 1979;
Newton & Thayer, 1992; Newton et al., 2000; Navarrete-
Heredia et al., 2002; Smetana, 2004; Bouchard et al., 2011).
This study firmly rejects the hypothesis of a close relationship
between the Tachyusina and any other group traditionally
placed in the tribe. The Tachyusina form a monophyletic
group within clade E that also includes the Athetini and
the Hygronomini (Figs 1 and 2). This is in contrast to the
morphology-based study of Pasnik (2010), that recovered the
Tachyusina as a sister group to the Oxypodini. However,
the latter relationship was not well supported and we consider
the results of Pasnik (2010) an artifact of erroneous character
coding [e.g. coding of the athetine bridge as missing in some
taxa although it is present (Meronera, Drusilla, Zyras and
Amaurodera), and coding of some highly correlated mouthpart
characters as independent].

The athetine bridge of the aedeagus is present in the tribes
Geostibini, Lomechusini and Athetini, supporting the close
relationship recovered by Elven er al. (2012), and presented
within this study. In the Tachyusina, the athetine bridge
is considered absent (Seevers, 1978), at least in its typical
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form. However, in some species of Gnypeta (Tachyusina)
the sclerotized parameral side of the median lobe of the
aedeagus has two short processes that could be interpreted
as remains of the athetine bridge (V. Gusarov, unpublished
observation). Besides, within several well-supported genera
of the Athetini (e.g. Philhygra) there are also species with
an incomplete athetine bridge (V. Gusarov, unpublished
observation), providing an additional argument for a possible
reduction of the athetine bridge within clade E and a close
relationship between the Tachyusina and Athetini.

The present study provides sufficient taxon sampling and
support for removing the Tachyusina from the Oxypodini.
Because the basal relationships within clade E are not resolved,
the Tachyusina are provisionally treated as separate tribe
Tachyusini. Based on the present analyses, the tribe includes
the genera Brachyusa, Dacrila, Gnypeta, Ischnopoderona,
Paradilacra, Tachyusa and Thinonoma.

The PHOL clade

Comprising  nine  subclades, the PHOL clade
(=Placusini—Hoplandriini—Oxypodini—Liparocephalini clade)
makes up the main bulk of Oxypodini genera included in
this study, as well as the tribes Hoplandriini, Liparocephalini
and Placusini (clade C; Fig. 2). The relationships among the
subclades, however, remain unresolved.

Subclade F largely corresponds to the subtribe Oxypodina
sensu Seevers (1978). It includes, among others, the genera
Oxypoda, Ocalea, Calodera and Ocyusa, which are the type
genera of the family group names Oxypodina, Ocaleina,
Caloderina and Ocyusina, respectively (Table 1). The names
Oxypodina and Ocaleina have the same publication date.
Newton & Thayer (1992), as the first revisers who listed
the two names as synonyms, treated Oxypodina as the valid
name and Ocaleina as invalid. For this reason subclade
F is classified as the subtribe Oxypodina. However, no
morphological apomorphy is known for the Oxypodina and the
subtribe can only be defined by a combination of characters
(Seevers, 1978; Newton et al., 2000).

Three of the six informal groups of the Oxypodina proposed
by Seevers (1978) are not recovered as members of subclade
F (i.e. Acrimaea, Amarochara and Dexiogyia groups). The
other three — Ocalea (= clade J), Oxypoda (=~ clade K) and
Gnathusa (within clade J) — together form subclade F.

The Ocalea group sensu Seevers included Ocalea,
Longipeltina and Ilyobates, and was proposed without a
diagnosis (Seevers, 1978). Klimaszewski & Pelletier (2004)
revised the Nearctic species of the Ocalea group, based mostly
on external characters and without analysing its phylogeny.
Here, some of the hypotheses proposed by Seevers (1978) and
Klimaszewski & Pelletier (2004) are rejected: (i) Ilyobates is
closely related to Oxypoda (clade K) and not Ocalea (clade
J); (i) the genera Ocalea sensu Klimaszewski & Pelletier and
Neothetalia are not monophyletic; (iii) Parocalea is closely
related to Dinarda and Thiasophila (clade N) and not Ocalea.
Corresponding to clade J, the Ocalea group is redefined and

includes Ocalea, Isoglossa, Neothetalia nimia, Mniusa and
Gnathusa, the latter placed by Seevers (1978) in the separate
Gnathusa group. However, Neothetalia canadiana is not
recovered within clade J. The sclerites of the internal sac of
the aedeagus are very different in N. canadiana and N. nimia
(V. Gusarov, unpublished observation), providing additional
support for the hypothesis that the two species are not closely
related, and should not be treated as congeneric.

The Oxypoda group was proposed by Seevers (1978) based
on the presence of the frontal suture (= frontoclypeal; Beutel
& Lawrence, 2005). However, depending on the sculpture
and punctation of the head, in different species the suture
may either appear well pronounced or almost indistinct (V.
Gusarov, unpublished observation). Inside the head capsule,
the suture corresponds to the frontoclypeal phragma connecting
the anterior tentorial pits. The phragma is present in all genera
of clade K except Ilyobates. In Oxypoda opaca, which does
not belong to clade K, the phragma is absent (V. Gusarov,
unpublished observation). We hypothesize that the presence of
a frontoclypeal phragma is a synapomorphy of clade K (with
reversal in Ilyobates). Future studies may address this issue in
more details. Corresponding to clade K, the Oxypoda group is
redefined and includes Oxypoda (but not O. opaca), Acrostiba,
Calodera, Devia, Ilyobates, Ocyusa, Ocyustiba, Oreuryalea
and Tetralaucopora.

Within clade K, the monophyly of two morphologically
fairly uniform genera, Ilyobates and Tetralaucopora, is
confirmed. In contrast, Oxypoda, represented by four species of
three subgenera (Oxypoda s. str., Mycetodrepa and Podoxya),
is recovered as non-monophyletic. As stated above, Oxypoda
(s. str.) opaca is not even a member of clade K. However, with
a total of 493 described species and 14 subgenera (Newton &
Thayer, 2005), Oxypoda is a very large genus and a more
extensive taxon sampling of Oxypoda and related genera is
needed for more informative phylogenetic conclusions.

The second subclade (H) of the PHOL clade includes
the members of the tribe Liparocephalini as sister to clade
M, which consists of four genera traditionally placed in the
Oxypodini. The Liparocephalini are a group of aleocharines
restricted to marine coastal habitats. A phylogeny of the
tribe was presented by Ahn & Ashe (1996) and Ahn et al.
(2010), but in both studies the outgroup did not include any
members of the Oxypodini. Clade M comprises the oxypodines
Blepharhymenus, Parocalea, Dinarda and Thiasophila. A
close relationship among these four genera has never been
proposed. As discussed above, Parocalea was traditionally
considered a member of the subtribe Oxypodina (Newton
etal., 2000) closely related to Ocalea (Klimaszewski &
Pelletier, 2004). Blepharhymenus was normally treated as
single genus of the subtribe Blepharhymenina, erected based
on the distinct body shape, particularly the very narrow
neck (Seevers, 1978). Thiasophila was treated as member
of the Dexiogyia group of the subtribe Oxypodina, together
with Dexiogyia, Crataraea and Haploglossa (Seevers, 1978).
As the latter two genera form the separate subclade I
within the PHOL clade, the phylogenetic analysis rejects
the hypothesis of a close relationship between Thiasophila
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and Haploglossa or Crataraea. Instead, Thiasophila is found
to be closely related to Dinarda of the oxypodine subtribe
Dinardina. The Dinardina were defined based on a more or less
limuloid body shape, with a broad and shield-like pronotum
(Seevers, 1978). Besides Dinarda, the subtribe includes
nine other myrmecophile genera, among them Myrmobiota
(Seevers, 1978). As Myrmobiota is recovered as a separate
lineage of the PHOL clade, distant from Dinarda, the
Dinardina sensu Seevers (1978) are not monophyletic. Thus,
the present study not only supports an independent origin of
myrmecophily in Dinarda and Myrmobiota, but also suggests
a single origin of myrmecophily in Thiasophila + Dinarda.
However, myrmecophily is common in many groups of
Aleocharinae (Seevers, 1965) and has evolved independently
many times. The overall similarity in body shape among many
myrmecophiles is likely correlated with a similar lifestyle
(Maruyama, 2009). Because most branches of subclade M
are very long, additional species of Blepharhymenus as well
as other genera of Dinardina need to be included in future
molecular studies to resolve the basal relationships.

The monophyly of the subtribe Meoticina (subclade G), as
defined according to Muona (1991) and Seevers (1978), is
confirmed. Meotica is recovered as the sister group to all
the remaining Meoticina in BI and ML analyses (Fig. 2),
whereas MP analysis yielded a sister group relationship
between Meotica and Apimela (Figure S1). However, the
presence of falcate claws (Seevers 1978) in all meoticine
genera except Meotica supports the results of BI and ML
analyses. Further, the clade Alisalia + (Bamona + Meoticina
Genus 1) is supported by a derived tarsal formula, 4-4-4.

As discussed above, Haploglossa and Crataraea were
placed by Seevers (1978) in the Dexiogyia group of the
Oxypodina, together with Dexiogyia and Thiasophila. Within
the present study, Haploglossa and Crataraea form the
separate subclade I of the PHOL clade, distant from both the
Oxypodina (subclade F) and Thiasophila (subclade N). There
is an available family group name, Microglottina Fenyes, 1918
(Newton & Thayer, 1992), for subclade I and we reintroduce
it as valid subtribe name.

Seevers (1978) placed the genus Phloeopora in the
Amarochara group of the Oxypodina. The present study recov-
ered Phloeopora as a separate lineage of the PHOL clade,
with unresolved relationships to the other eight subclades.
Amarochara is found not even to be a member of the tribe Oxy-
podini, refuting Seevers’ (1978) hypothesis of the Amarochara
group. Instead, based on the inferred phylogeny we treat
Phloeopora as the only member of the subtribe Phloeoporina.
Phloeoporina is an available family group name (Newton &
Thayer, 1992) that was originally introduced for a subtribe
that included Phloeopora, and three genera which are cur-
rently considered as members of the tribe Athetini (Benick &
Lohse, 1974; Smetana, 2004).

The remaining three separate lineages of the PHOL clade
are an unidentified genus from Peru (labelled as Aleocharinae
Genus 1), and the tribes Placusini and Hoplandriini, both
represented by their type genera. A close relationship of
the Hoplandriini to either the Placusini or Oxypodini was
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not recovered by the analyses of Elven er al. (2010, 2012).
In contrast, the close relationship of the Placusini and the
Oxypodini as demonstrated by Elven er al. (2010, 2012) is
confirmed. It is important to note that the Hoplandria branch
is very long, which may have affected the results of the
phylogenetic analyses. Additional genera of the Hoplandriini
need to be included in the analyses in order to clarify the tribe’s
relationships to the Oxypodini and other aleocharines.

Updated classification of the Oxypodini

The present study reveals that Amarochara, Halobrecta and
the Tachyusini do not belong to the tribe Oxypodini. Because
the basal relationships in the PHOL clade remain unresolved,
all genera of clade C traditionally classified as Oxypodini are
still considered as members of the tribe. For the same reason,
the Liparocephalini are not downgraded to a subtribe of the
Oxypodini. The oxypodine subclades of clade C are recognized
as subtribes, except for the Myrmobiota lineage, which has
currently no available family group name. Myrmobiota is
classified as Oxypodini incertae sedis.

Based on the present analyses, the following five sub-
tribes are recognized: Oxypodina Thomson (clade F)
(=Caloderina Mulsant & Rey; =0Ocaleina Thomson;
= Ocyusina Mulsant & Rey), Dinardina Mulsant & Rey (clade
M) (=Blepharhymenina Klimaszewski & Peck, syn.n.),
Meoticina Seevers (clade G), Microglottina Fenyes (clade
I) and Phloeoporina Thomson (Tables 1, S4). An updated
diagnosis for each subtribe is provided in Table S4.

The type genera of four oxypodine suprageneric groups
were not available for the present study, namely Aphytopodina
Bernhauer & Scheerpeltz, Decusina Fenyes, Homéusates
Mulsant & Rey, and Saphoglossina Bernhauer & Scheerpeltz
(Table 1). The Aphytopodina are considered a valid subtribe
of the Oxypodini (Newton & Thayer, 1992; Bouchard et al.,
2011). The family group names Decusina and Homéusates are
currently treated as synonyms of the subtribe name Dinardina
(Newton & Thayer, 1992; Bouchard et al., 2011). Regarding
the Saphoglossina, we follow the traditional view (Newton &
Thayer, 1992; Bouchard et al., 2011) and do not consider them
as a member of the Oxypodini, in contrast to Navarrete-Heredia
et al. (2002).

Aleocharine phylogeny

The present study relies on the most complete sampling
of aleocharine tribes. A comprehensive phylogeny of the
subfamily with 12000 described species classified into more
than 50 tribes (Newton & Thayer, 2005) is beyond the scope
of this study, but the results allow for new insights into the
phylogenetic relationships within the Aleocharinae.

Tribe Aleocharini

The tribe Aleocharini (clade A) is the sister group to
the remaining ‘higher’ aleocharines except the Hypocyphtini.
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Recently, the Aleocharini were considered as closely related
to the Hoplandriini (Seevers, 1978; Ashe, 2007). However,
morphology-based analyses have never provided unequivocal
evidence for the sister group relationship between the Ale-
ocharini and the Hoplandriini (Maus et al., 2001; Ahn & Ashe,
2004; Ashe, 2005; Pasnik, 2010). The present study does not
support a close relationship between the two tribes.

Tribe Hygronomini

The tribe Hygronomini, represented by the single species
Hygronoma dimidiata, is firmly placed in clade E together
with the Athetini and the Tachyusini. The athetine bridge of the
aedeagus is present in H. dimidiata (V. Gusarov, unpublished
observation). This further supports a close relationship between
H.dimidiata and the Athetini. Thirty-eight genera have been
assigned to the Hygronomini based on the tarsal formula 4-4-
4 (Bernhauer & Scheerpeltz, 1926), which is considered rare
within the Aleocharinae. Some of these genera have already
been moved to other tribes (e.g. Seevers, 1957, 1965, 1978).
However, no study has yet addressed the phylogeny of the
Hygronomini and their relationships to other tribes.

Additional aleocharine clades

Five further conclusions on the phylogeny of the ‘higher’
Aleocharinae seem justified, as many intertribal relationships
were recovered with high statistical support.

1 Corroborating the results of Ahn & Ashe (2004) the tribe
Hypocyphtini is confirmed as sister group to all other tribes
of ‘higher’ aleocharines.

2 In contrast to the traditional classification of the Homalotini
(Newton & Thayer, 1992), the subtribe Homalotina is
not closely related to the subtribes Gyrophaenina and
Bolitocharina of the Homalotini.

3 Contrary to the recent hypothesis of Klimaszewski ef al.
(2010), a close relationship of the tribe Himalusini to any
of the tribes Aleocharini, Hoplandriini, Placusini, or the
subtribe Homalotina is not supported.

4 The tribe Pygostenini is recovered as the sister clade to the
Lomechusini. An extended taxon sampling may clarify the
relationship between the two tribes.

5 Stenectinobregma is not closely related to either the
Tachyusini or Pronomaeini. The genus was described
by Scheerpeltz (1974) twice, as a member of the tribe
Pronomaeini, and under the name Gnypetoidea as a member
of the Tachyusini. Pasnik (2007) synonymized Gnypetoidea
with Stenectinobregma, but did not explicitly assign it to a
tribe.

Proposed changes in classification

Based on the present study, the following changes in the
classification of the Aleocharinae are proposed:

1 The genus Amarochara Thomson is transferred from the
tribe Oxypodini Thomson to the tribe Aleocharini Fleming.

2 The subtribe Tachyusina Thomson is removed from the tribe
Oxypodini Thomson and provisionally treated as the valid
tribe Tachyusini.

3 The tribe Oxypodini Thomson is divided into six sub-
tribes: Aphytopodina Bernhauer & Scheerpeltz, Oxypodina
Thomson (= Caloderina Mulsant & Rey; = Ocaleina Thom-
son; =Ocyusina Mulsant & Rey), Dinardina Mulsant &
Rey (=Blepharhymenina Klimaszewski & Peck, syn.n.),
Meoticina Seevers, Microglottina Fenyes and Phloeoporina
Thomson (Table 1).

4 The subtribe Taxicerina Lohse is reinstated as tribe Taxi-
cerini. The tribe includes Halobrecta Thomson, Discerota
Mulsant & Rey and Taxicera Mulsant & Rey.

Supporting Information

Additional Supporting Information may be found in the online
version of this article under the DOI reference:
10.1111/syen.12011

Figure S1. Bootstrap consensus tree from the MP analysis
of the full dataset. Clade labels are in circles. Bootstrap
support values > 50 are indicated above branches. Clade
names follow the newly proposed classification.

Figure S2. Bootstrap consensus tree from the MP analysis
of the reduced dataset. Clade labels are in circles. Bootstrap
support values > 50 are indicated above branches. Clade
names follow the newly proposed classification.

Figure S3. Best tree from the ML analysis of the full dataset
with 28§ sequences excluded. Clade labels are in circles.
Bootstrap support values > 50 are indicated above branches.
Clade names are based on the newly proposed classification.

Figure S4. Best tree from the ML analysis of the full dataset
based on a modified partitioning scheme (/8S and 28S one
partition each). Clade labels are in circles. Bootstrap support
values > 50 are indicated above branches. Clade names are
based on the newly proposed classification.

Figure S5. Best tree from the ML analysis of the full dataset
based on a modified partitioning scheme (partitioned by
gene). Clade labels are in circles. Bootstrap support values
> 50 are indicated above branches. Clade names are based
on the newly proposed classification.

Figure S6. Majority rule consensus tree from the BI
analysis of the reduced dataset. Clade labels are in circles.
Posterior probabilities > 0.94 are indicated above branches.
Clade names are based on the newly proposed classification.

Table S1. Label information for the specimens included
in this study. The specimens marked with asterisk (*) and
dagger (1) are deposited in the Natural History Museum
of Denmark (ZMUC) and the Field Museum of Natural
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History (FMNH), respectively. The remaining specimens
are deposited in the Natural History Museum, University
of Oslo (ZMUN).

Table S2. List of primers and amplification strategies with
annealing temperatures (Ta) used in this study.

Table S3. Characteristics of the sequence data.

Table S4. Diagnoses of the subtribes of Oxypodini.
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