УДК 576.895.121

ЦЕСТОДЫ РОДА PROTEOCEPHALUS (CESTODA: PROTEOCEPHALIDEA) ИЗ КОРЮШКИ OSMERUS EPERLANUS

© Л. В. Аникиева

У европейской корюшки Osmerus eperlanus бассейна Балтийского моря обнаружены 3 вида цестод рода Proteocephalus: специфичный паразит корюшки P. longicollis (Zeder, 1800), паразит сиговых рыб P. exiguus La Rue, 1911 и паразит окуня P. percae (Muller, 1780), P. tetrastomus (Rud, 1810) переведен в число синонимов P. longicollis.

Цестоды рода *Proteocephalus* широко распространены у пресноводных рыб Голарктики. В корюшке они неоднократно были описаны под разными названиями. Объективность их видовой диагностики, а также выводы исследований по синонимике видов в настоящее время оценить невозможно (Фрезе, 1965). Большинство исследователей признают паразитирование в европейской корюшке одного вида рода *Proteocephalus* — *P. longicollis* (Zeder, 1800) (Дубинина, 1987). Попытка восстановить одно из забытых названий была предпринята Виллемсом (Willemse, 1969). У корюшки пресных вод Нидерландов он нашел два вида рода *Proteocephalus*: *P. longicollis* и *P. tetratomus* (Rudolphi, 1810). Однако и после этой публикации у корюшки по-прежнему находили только *P. longicollis* или ограничивались определением цестод, как *Proteocephalus* sp. (Voigt, 1975; Пугачев, 1984; Andersen, Valtonen, 1990; Rumyantsev e. a., 1995, и др.).

Настоящая работа проведена с целью уточнения видового состава цестод рода Proteocephalus из европейской корюшки Osmerus eperlanus.

материал и методы

Материал собирали в северной части Ботнического залива Балтийского моря, северной части Ладожского озера и Шальской губе Онежского озера осенью (октябрь—ноябрь 1989 г.) и весной (май—июнь 1982, 1992—1993 гг.). Всего вскрыты 162 экз. корюшки, найдены 692 цестоды рода *Proteocephalus*. Их фиксация и окраска были стандартизированы (Быховская-Павловская, 1985). Гельминтов дифференцировали по совокупности морфофизиологических признаков с учетом стадии развития. В диагностику включены качественные (форма стробилы, тип члеников) и меристические (размеры сколекса, присосок, половозрелых члеников, семенников, бурсы цирруса, яичников, желточников, стробилы, количество семенников) признаки, а также относительные показатели (соотношения ширины и длины половозрелых члеников, длины бурсы цирруса и ширины членика). Количественные показатели обработаны статистически с использованием пакета программ Statgraph.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Обнаруженные цестоды в корюшке из бассейна Балтийского моря находились на разных стадиях развития: плероцеркоиды, неполовозрелые, половозрелые и зрелые. По качественным признакам (форме тела и типу членистости) они распались

на две дискретные группы. Первая — с резко расширенной стробилой в ее середине и краспедотной формой члеников (рис. 1, A). Она была представлена гельминтами на всех стадиях развития. По форме стробилы и членика, а также по основным систематическим признакам (количеству семенников и отношению длины бурсы цирруса к ширине членика) и морфометрическим показателям других признаков цестоды этой группы были отнесены к P. longicollis. Параметры большинства признаков взрослых P. longicollis укладывались в пределы, указанные для этого вида (Дубинина, 1987). Меньшие размеры имели бурса цирруса и половозрелые членики. Органы прикрепления (сколекс и боковые присоски) имели низкие коэффициенты варьирования. Остальные признаки характеризовались средним и повышенным уровнями изменчивости (Мамаев, 1970). Среди генеративных признаков более консервативными были признаки мужской половой системы (см. таблицу).

Встречаемость *P. longicollis* в корюшке была невысокой: в Онежском оз. — 3.3 %, индекс обилия (ИО) 0.03 экз., Ладожском оз. — 13.3 %, ИО 0.03 экз., Ботническом заливе — 30 %, ИО 4 экз. В осенних сборах преобладали личинки и молодые черви, в весенних — взрослые цестоды, неполовозрелые встречались единично (рис. 2, *A*). Можно предположить, что для *P. longicollis* характерна нечетко выраженный годичный цикл развития с осенним заражением хозяина и весенним продуцированием яиц.

При сравнении полученных нами данных с данными Виллемса (Willemse, 1969), приведенными им для P. tetrastomus (характерная форма стробилы, диаметр боковых присосок, количество семенников и их размеры, отношение бурсы цирруса к ширине членика), оказалось, что оба вида морфологически очень близки, за исключением апикальной присоски, которая не была обнаружена у P. tetrastomus. Этот орган действительно трудно различим у взрослых P. longicollis на тотальных препаратах. Однако он хорошо заметен у плероцеркоидов и молодых особей. Перекрестное заражение окуня, угря и колюшки P. tetrastomus выявило его высокую степень специфичности к окончательному хозяину — корюшке Osmerus eperlanus (Willemse, 1969). Автор также установил, что осенью и весной P. tetrastomus встречался чаще, чем летом. Сходство морфологических признаков и сезонной динамики встречаемости P. tetrastomus и P. longicollis позволяют считать эти виды синонимами. Поскольку P. tetrastomus не упоминался в литературе в течение более чем 50 лет, целесообразно сохранить за паразитом корюшки наиболее распространенное название P. longicollis, а P. tetrastomus отнести к nomen oblitum и включить в число синонимов (Межд. кодекс, 1988).

Вторую группу составили цестоды с обычной для рода Proteocephalus формой стробилы с постепенным ее расширением по мере формирования члеников акраспедотного типа. При вскрытии рыбы они встречались совместно с $P.\ longicollis$ и визуально были легко различимы. Они обнаружены во всех 3 водоемах. Зараженность корюшки колебалась от 50 до 70 % с индексом обилия 2.5—3.2 экз. По форме члеников выделены 3 типа стробил: с удлиненными, широкими и квадратными члениками. Среди неполовозрелых гельминтов встречались стробилы со всеми 3 типами члеников. Половозрелые стробилы имели только квадратные и удлиненные членики (рис. 1, F). Осенью и весной преобладали неполовозрелые особи, половозрелые цестоды встречались единично, а зрелые не были обнаружены вообще, лишь у отдельных экземпляров наблюдались начальные этапы формирования яиц (рис. 2, F).

Установлено, что половозрелые цестоды этой группы имели сходные с *P. longi-collis* размеры сколекса, но отличались по основным систематическим признакам (количеству семенников и отношению длины бурсы цирруса к ширине членика) и морфометрически (размерами апикальной присоски, шириной половозрелых члеников, размахом крыльев яичника, шириной желточных желез) (см. таблицу).

Отсутствие зрелых цестод, преобладание неполовозрелых стадий весной в период массового созревания гельминтов, мелкие размеры позволяют считать, что в корюшке наряду с *P. longicollis* паразитируют неспецифичные для нее виды рода *Proteocephalus*. Сравнение обнаруженных нами цестод с видами рода *Proteocephalus*, обита-

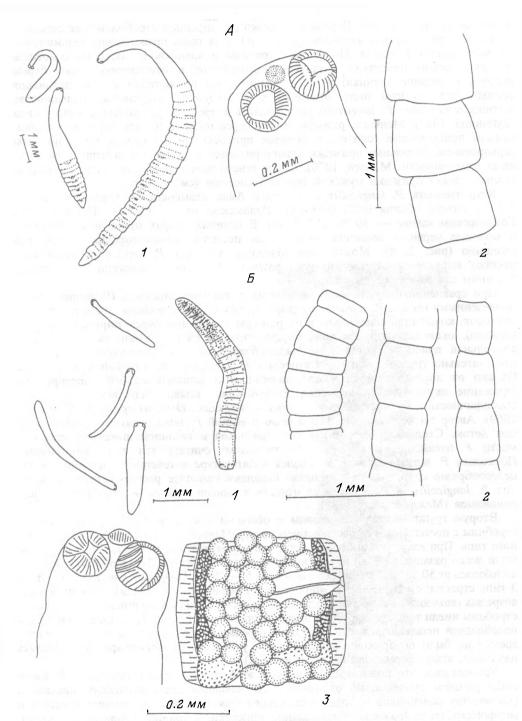
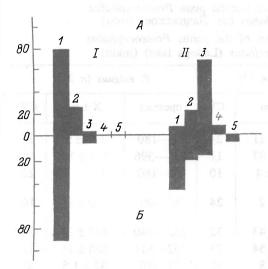


Рис. 1. Цестоды рода Proteocephalus из корюшки Osmerus eperlanus.

 $A-P.\ longicollis:\ l-$ плероцеркоиды и неполовозрелые особи, 2- сколекс и форма половозрелых члеников; B- другие виды рода $Proteocephalus:\ l-$ плероцеркоиды и неполовозрелые особи, 2- форма члеников, B- типичный сколекс и половозрелый членик B- exiguus.

Fig. 1. Cestodes of the genus Proteocephalus from the smelt Osmerus eperlanus.


Морфометрические показатели цестод рода Proteocephalus из корюшки Osmerus eperlanus (оз. Ладожское) (мкм) Morphometric indices of cestodes of the genus Proteocephalus from the smelt Osmerus eperlanus (Ladoga lake) (mkm)

Признак	P. longicollis (n 17)			P. exiguus (n 25)		
	пределы	X ± m	CV	пределы	X ± m	CV
Длина сколекса	72—198	149 ± 11	24	83—180	134 ± 9	25
Ширина сколекса	270—414	340 ± 37	-11	198—396	312 ± 14	18
Диаметр боковых присосок	108—155	140 ± 4	10	72—180	121 ± 7	22
Диаметр апикальной присоски	15—30	24 ± 2	24	54—90	70 ± 3	16
Длина членика	237—864	577 ± 43	32	232—740	497 ± 23	27
Ширина членика	493—1270	923 ± 54	23	352—811	526 ± 16	17
Количество семен-	49—97	80 ± 3	15	27—70	37 ± 1.5	23
Диаметр семенников	35—99	67 ± 5	29	42—105	73 ± 3	22
Длина бурсы цир- руса	161—282	215 ± 7	13	141—225	191 ± 4	12
Ширина бурсы цир- руса	56—120	84 ± 4	19	49—105	80 ± 3	20
Длина яичника	423—775	584 ± 24	36	267—528	387 ± 14	22
Ширина яичника	70—239	147 ± 12	38	49—190	118 ± 6	32
Ширина тяжей жел- точника	63—141	92 ± 6	24	21—70	46 ± 4	31
Отношение длины бурсы цирруса к ширине членика	0.17—0.33	0.22 ± 0.003	16	0.24—0.44	0.36 ± 0.008	14
Отношение ширины членика к длине	0.9—3	1.6 ± 0.1	37	0.7—1.7	1.1 ± 0.04	22
Длина стробилы (см)	0.5—1.7	0.9 ± 0.1	39	0.2—1.5	0.6 ± 0.1	60

ющими в бассейне Балтийского моря (Барышева, Бауер, 1957; Andersen, Valtonen, 1990; Румянцев, 1996), показало, что они отличались от паразитов угря *P. macrocephalus*, карповых — *P. torulosus*, колюшковых — *P. filicollis* и *P. ambiguus* наличием хорошо выраженной апикальной присоски (Фрезе, 1965), от паразита ерша *P. cernuae* — латеральным расположением боковых присосок (Scholz, 1989). Наиболее близки они были двум видам — паразиту сиговых рыб *P. exiguus* и паразиту окуня *P. percae*. По форме члеников (широкой, квадратной и удлиненной) неполовозрелые гельминты были отнесены нами как к *P. exiguus*, так и *P. percae*, половозрелые — только к *P. exiguus* (Hanzelova e. a., 1995).

Исходя из современных представлений о *P. longicollis* (Фрезе, 1965; Дубинина, 1987), цестоды, определенные Виллемсом (Willemse, 1969) как *P. longicollis*, по типичной для рода *Proteocephalus* форме стробилы, апикальной присоске — диаметр 70—130 мкм, количеству семенников — 30—40 (диаметр 60 мкм) и отношению длины бурсы цирруса к ширине членика 7/20—4/10 не могут принадлежать к этому виду, а относятся к группе цестод с хорошо выраженной апикальной присоской.

Известно, что при определении вида паразита в нетипичном хозяине традиционные таксономические признаки оказываются непригодными (Фрезе, 1977). В част-

Рис. 2. Встречаемость цестод рода Proteocephalus в корюшке.

— P. longicollis, Б — другие виды; I осень; ІІ — весна-лето: но оси абсцисс — встречаемость отдельных стадий (%); по оси ординат стадии развития: 1 — плероцеркоидная, 2 — неполовозрелая, 3 — половозрелая, 4 — зрелая, 5 погибшие.

Fig. 2. Frequency of cestodes of the genus Proteocephalus in the smelt.

ности, для цестод рода Proteocephalus пиагностическую ценность теряет важнейший систематический признак отношение ширины членика и длины бурсы цирруса (Аникиева, 1995). Необходимым элементом анализа в этом случае является степень совпадения биологических особенностей и потребностей

вида паразита и хозяина к факторам внешней среды. Европейская корюшка представитель арктического пресноводного комплекса. В систематическом отношении и по экологическим характеристикам она ближе к сиговым рыбам, чем к окуневым. Как и сиговые, она входит в подотряд лососевидных, холодолюбива, предпочитает глубины 10—30 м с температурой воды 6—12°, в прибрежной зоне встречается лишь весной в период размножения и осенью, когда температура воды понижается до 12—10°. По способу добычи пищи и составу кормовых организмов корюшка относится к группе рыб планктофагов-хищников и ближе к окуню, в то время как сиговые — типичные планктофаги (Иванова, 1982; Решетников и др., 1982). Р. exiguus и Р. percae, как и их основные хозяева — сиговые и окуни, относятся к разным фаунистическим комплексам: первый — к арктическому пресноводному, второй — бореальному равнинному, и обладают всеми присущими соответствующему комплексу признаками. Кроме того, Р. exiguus способен развиваться при более низкой температуре, чем Р. percae (Wootten, 1974). Сходство трофической ниши корюшки, окуня и сиговых (планктофагия) определяет попадание в нее обоих видов протеоцефалюсов, а разное отношение к важнейшему лимитирующему фактору — температуре — развитие до половозрелой стадии только Р. ехiguus. Развитие P. percae останавливается на стадии закладки и формирования половых органов. Для обоих видов корюшка выполняет роль преимущественно абортивного хозяина, являясь тупиком в их циклах развития.

Пресноводная паразитофауна корюшки характеризует ее как типичного планктофага—хищника. В состав паразитов корюшки входит много видов с широким кругом хозяев, а также паразитов, встречающихся у рыб других систематических групп. Из них у корюшки чаще всего обнаруживаются паразиты сиговых и окуневых рыб. Причем корюшка используется ими преимущественно как промежуточный или случайный хозяин. Полученные нами данные показывают, что из цестод рода Proteocephalus у корюшки могут встречаться два неспецифичных для нее вида: P. exiguus и P. percae. Оба вида чрезвычайно широко распространены в пресноводных водоемах Палеарктики, полигостальны и полиморфны. Высокая морфологическая пластичность, широкие границы изменчивости отдельных признаков этих цестод при паразитировании в разных хозяевах, вероятно, явились причиной опи-

сания в корюшке новых видов рода Proteocephalus.

Анализ пресноводной паразитофауны корюшки, отрицательные результаты перекрестного заражения P. longicollis других видов рыб (Willemse, 1969) и наши материалы показывают, что единственным специфичным для нее видом является цестода рода *Proteocephalus* — *P. longicollis*. *P. longicollis* — сравнительно редкий вид с невысокой численностью. В ареале европейской корюшки (побережье Западной Европы) он обнаружен у побережья Северного моря, в Ботническом заливе, Ладожском и Онежском озерах. *P. longicollis* встречается также у азиатской корюшки в Белом море и на Дальнем Востоке. У корюшки Северной Америки *P. longicollis* не зарегистрирован.

Список литературы

- Аникиева Л. В. Морфологическая изменчивость цестод рода Proteocephalus (Cestoda: Proteocephalidea) при паразитировании в факультативных хозяевах) // Паразитология. 1995. Т. 29, вып. 6. С. 505—510.
- Барышева А. Ф., Бауер О. Н. Паразиты рыб Ладожского озера // Изв. ВНИОРХ. 1957. Т. 42. С. 175—226.
- Быховская-Павловская И. Е. Паразиты рыб. Руководство по изучению. Л., 1985. 121 с.
- Дубинина М. Н. Класс ленточные черви Cestoda // Определитель паразитов пресноводных рыб. Т. 3. Л., 1987. С. 5—71.
- Иванова М. Н. Популяционная изменчивость пресноводных корюшек. Рыбинск, 1982. 144 с.
- Мамаев С. А. Некоторые вопросы формирования популяционной структуры древесных растений // Экология. 1970. № 1. С. 39—49.
- Международный кодекс зоологической номенклатуры. Л., 1988. 100 с.
- Пугачев О. Н. Паразиты пресноводных рыб Северо-Востока Азии. Л., 1984. 153 с. Решетников Ю. С., Попова О. А., Стерлигова О. П. Изменение структуры рыбного населения эвтрофируемого водоема. М., 1982. 248 с.
- Румянцев Е. А. Эволюция фауны паразитов рыб в озерах. Петрозаводск, 1996. 186 с.
- Фрезе В. И. Протеоцефаляты ленточные гельминты рыб, амфибий и рептилий // Основы цестодологии. Т. 5. М., 1965. 538 с.
- Фрезе В. И. Лентецы Европы (экспериментальное изучение полиморфизма) // Тр. ГЕЛАН. 1977. Т. 27. С. 174—204.
- Andersen K. I., Valtonen E. T. On the infracommunity structure of adult cestodes in freshwater fishes // Parasitology. 1990. Vol. 101, pt 2. P. 257—264.
- Hanzelova V., Snabel V., Spakulova M., Kralova I., Fagerholm H.-P. A comparative study of the fish parasites Proteocephalus exiguus and P. percae (Cestoda: Proteocephalidae): morphology, isoenzymes, and karyotype // Can. J. of Zool. 1995. Vol. 73, N 7. P 1191—1198.
 Rumyansev E. A., Ieshko E. P., Shulman B. S. Fish parasite fauna of Lake
- Rumyansev E. A., Ieshko E. P., Shulman B. S. Fish parasite fauna of Lake Ladoga // Abstracts of the first international lake Ladoga symposium 1993. Joensuu, 1995. P. 193—201.
- Scholz T. Amphilinida and Cestoda, parasites of fish in Czechoslovakia. 1989. 56 p. Voigt H.-R. A cheklist of the parasites on the smelt (Osmerus eperlanus) // Tiedoksianto. 1975. Inf. 14. P. 28—40.
- Willemse J. J. The genus Proteocephalus in the Netherlands // J. Helminth. 1969. Vol. 43. P. 207—222.
- Wootten R. Studies on the life history and development of Proteocephalus percae (Muller) (Cestoda: Proteocephalidea) // J. Helminth. 1974. Vol. 48. P. 269—281.
- Институт биологии КНЦ РАН, Петрозаводск, 185610

Поступила 24.12.1996

CESTODES OF THE GENUS PROTEOCEPHALUS (CESTODA: PROTEOCEPHALIDEA) FROM THE EUROPEAN SMELT OSMERUS EPERLANUS

L. V. Anikieva

Key words: fish parasite, Cestoda, Proteocephalidae, Osmerus eperlanus.

SUMMARY

The cestode species of the genus *Proteocephalus* are revealed from the European smelt *Osmerus eperlanus* in the Baltic Sea basin: a specific smelt parasite *Proteocephalus longicollis* (Zeder, 1800), white fish parasite *P. exiguus* La Ruc, 1911, and perch parasite *P. percae* (Muller, 1870). The European smelt is a facultative host for two latter species. *P. tetrastomus* (Rud, 1810) is transferred to the synonyms of *P. longicollis*.