УДК 576.89 + 591.557

СТРУКТУРА КОМПОНЕНТНОГО СООБЩЕСТВА ПАРАЗИТОВ EPШA GYMNOCEPHALUS CERNUUS (LINNAEUS, 1758) B РАЗНЫЕ СЕЗОНЫ ГОДА

© Г. Н. Доровских, В. Г. Степанов²

Сыктывкарский государственный университет, химико-биологический факультет, кафедра биологии Октябрьский пр., 55, Сыктывкар, 167001

1 E-mail: dorovsk@syktsu.ru
Поступила 10.11.2010

Показано, что при сезонных изменениях сообщества паразитов ерша выделяются 3 его состояния. Они приурочены к срокам, отличным от таковых для сообществ кишечных гельминтов рыб умеренной зоны, а также сообществ паразитов гольяна и хариуса из бассейнов рек Вычегда и Печора. У ерша наибольшее число видов паразитов отмечено в марте, наименьшее — в сентябре. Формирование видовой структуры сообщества паразитов ерша осуществляется в течение зимне-весеннего периода года, а разрушение в июле—сентябре.

Ключевые слова: паразиты рыб, компонентные сообщества, Gymnocephalus cernuus.

Исследование сезонных закономерностей формирования структуры паразитарных сообществ начато в 1990-х годах (Kennedy, 1997; Пугачев, 1999; Доровских, 2002; Жохов, 2003; Русинек, 2005, 2007). Установлено, что сообщества ихтиопаразитов в течение года последовательно проходят состояния формирования, сформированности и разрушения своей видовой структуры (Доровских, Голикова, 2004; Голикова, 2005; Степанов, 2007; Доровских, Степанов, 2009а).

Поскольку этот вывод сделан на материалах по сообществам паразитов представителей бореального предгорного фаунистического комплекса, сформированным у гольяна *Phoxinus phoxinus* (L.) и хариуса *Thymallus thymallus* (L.), то было решено уточнить характеристики сообщества паразитов в разные сезоны года на примере сообщества паразитов ерша *Gymnocephalus cernuus* (L.), входящего в состав бореального равнинного фаунистического комплекса.

МАТЕРИАЛ И МЕТОДИКА

Ерш возрастом 2—2+ (всего 120 экз.) отловлен в 2007 г. из курьи напротив дер. Парчег (Сыктывдинский р-н, Республика Коми), находящейся в 31 км от г. Сыктывкара вниз по течению р. Вычегды. Объем каждой выборки — 15 экз. рыб. Сроки сбора материала приведены в подписи к рисунку. Сбор материала произведен по общепринятой методике. Порядок обработки данных по сообществам паразитов рыб, содержание использованных понятий приведены в ряде публикаций (Пугачев, 1999; Доровских, Голикова, 2004; Доровских, Степанов, 2009б).

РЕЗУЛЬТАТЫ

На протяжении всего срока наблюдений (табл. 1, 2) в сообществе паразитов ерша по численности и биомассе доминировал аллогенный специалист Ichthyocotylurus variegatus. Доля аллогенных видов всегда больше 0.6, наибольших значений она достигла в августе—сентябре. Весь период наблюдений аллогенных видов было 2 (Diplostomum spathaceum, I. variegatus) и только в феврале — 3 (D. spathaceum, D. volvens, I. variegatus). В течение года лидерами оставались и виды—генералисты, их доля в сообществе с февраля по декабрь почти не менялась. Низшие значения индекса доминирования Бергера—Паркера отмечены в марте—мае, высшие в августе и сентябре. Наименьшее значение индекса выравненности видов было в августе—сентябре, наибольшее — в марте—июле. Величина индекса Шеннона максимальных величин достигала в марте—мае, далее она закономерно снижалась и опускалась до минимальных значений в сентябре, затем в декабре и феврале вновь увеличивалась. Не оставалось постоянным в сообществе с февраля по декабрь и число групп видов, выделенных по соотношению их биомасс (табл. 3). В июле и августе их было 2, в другие месяцы — 3 (см. рисунок). Сумма ошибок уравнений регрессии, отражающая состояние структуры сообщества, наименьшие значения имела в декабре и феврале, наивысшие — в июле (табл. 2).

Итак, сообщество паразитов ерша в июле—сентябре характеризуется самым низким видовым разнообразием, наименьшими значениями числа особей паразитов и их биомассы. Величины сумм ошибок уравнений регрессии в этот период имеют наиболее высокие значения, что свидетельствует о нарушении в сообществе количественных отношений видов. В сообществе паразитов ерша в июле и августе отмечены 2 группы видов, выделенных по соотношению их биомасс, в сентябре — 3. В последнем случае 1-я группа образована только метацеркариями Ichthyocotylurus variegatus. В эти 3 месяца дактилогирусы и эргазилюсы заканчивают яйцекладку и отмирают. В это же время снижают свою численность гиродактилюсы, глохидии, Phyllodistomum folium и скребни, у Bunodera luciopercae появляются особи новой генерации, начинается процесс заражения метацеркариями Diplostomum и Ichthyocotylurus рыбы. Это обусловливает увеличение числа особей паразитов и их биомассы от июля к сентябрю.

В декабре, феврале и марте в структуре сообщества паразитов выделяется 3 группы видов. В декабре в состав 1-й группы входят *I. variegatus* и

Таблица 1
Паразитофауна ерша из бассейна р. Вычегды
Тable 1. Parasite fauna of Gymnocephalus cernuus from the Vychegda River basin

	Месяц отлова рыбы и объемы выборок											
Виды паразитов	Февраль	Март	Май	Июнь	Июль	Август	Сентябрь	Декабрь				
	n = 15											
Trichodina sp.	+	0	+	0	0	0	0	+				
Dermocystidium percae Reichenbach-Klinke, 1950	2 (0.13)	1 (0.07)	1 (0.13)	0	0	1 (0.07)	0	1 (0.07)				
Henneguya creplini (Gurley, 1894)	3 (1.0)	5 (8.2)	3 (1.6)	9 (2.1)	11 (2.2)	6 (0.8)	1 (0.13)	5 (0.8)				
Dactylogyrus amphibotrium Wagener, 1857	12 (3.8)	13 (4.8)	14 (6.3)	13 (3.2)	8 (0.8)	3 (0.3)	1 (0.07)	10 (1.8)				
D. hemiamphibotrium Ergens, 1956	0	1 (0.07)	1 (0.07)	0	0	0	0	0				
Gyrodactylus longiradis Malmberg, 1957	? (0.9)	2 (0.2)	? (0.9)	10 (0.7)	0	0	0	? (1.6)				
Gyrodactylus cernuae Malmberg, 1957	? (0.3)	2 (0.5)	? (7.1)	? (2.8)	2 (0.3)	0	0	? (0.5)				
Triaenophorus nodulosus (Pallas, 1781), pl.	0	0	0	0	0	1 (0.07)	0	0				
Proteocephalus cernuae (Gmelin, 1790)	0	2 (0.13)	0	0	0	0	0	1 (0.07)				
Bunodera luciopercae (Mueller, 1776)	2 (0.13)	8 (1.2)	6 (0.7)	8 (0.8)	1 (0.07)	2 (0.3)	7 (0.7)	6 (0.9)				
Phyllodistomum folium (Olbers, 1926)	2 (0.13)	2 (0.9)	3 (0.2)	1 (0.07)	0	0	0	1 (0.07)				
Diplostomum spathaceum (Rudolphi, 1819), larvae	9 (1.5)	11 (2.5)	11 (2.1)	12 (1.9)	10 (2.3)	11 (1.8)	11 (1.9)	13 (2.3)				
D. volvens Nordmann, 1832, larvae	1 (0.07)	0	0	0	0	0	0	0				
Ichthyocotylurus variegatus (Creplin, 1825), larvae	15 (80.2)	15 (44.7)	15 (60.8)	14 (36.1)	15 (14.9)	12 (29.7)	15 (36.3)	15 (54.3)				
Camallanus lacustris (Zoega, 1776)	0	1 (0.07)	0	0	0	1 (0.07)	0	0				
Raphidascaris acus (Bloch, 1779), larvae	8 (1.5)	6 (1.2)	1 (0.07)	1 (0.13)	2 (0.5)	0	1 (0.2)	2 (0.3)				
Neoechinorhynchus rutili (Müller, 1780)	7 (0.8)	6 (0.7)	4 (0.7)	2 (0.13)	0	0	0	6 (1.13)				
Unionidae gen. sp., larvae	14 (10.6)	14 (11.5)	13 (6.3)	3 (0.9)	0	1 (0.6)	0	10 (1.4)				
Ergasilus briani Markewitsch, 1932	1 (0.07)	3 (0.2)	3 (0.3)	1 (0.07)	1 (0.5)	0	1 (0.07)	1 (0.07)				

Примечание. За скобками — число рыб, зараженных данным видов паразита, в скобках — индекс обилия.

Таблица 2

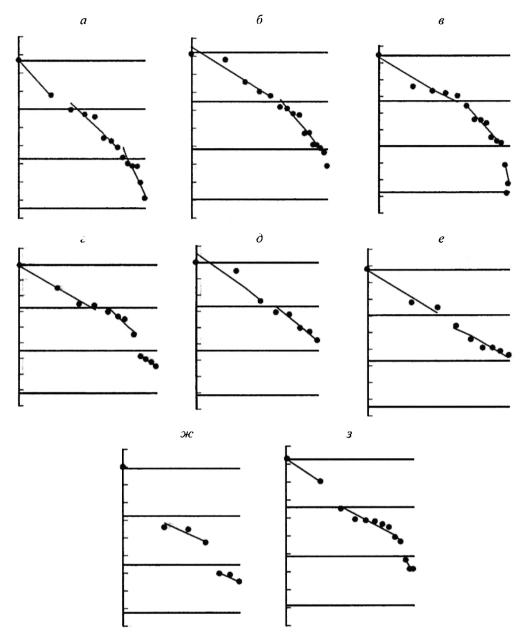
Характеристики компонентного сообщества паразитов срша из бассейна р. Вычегды
Тable 2. Characteristics of the component parasite communities in the *Gymnocephalus cernuus* from the Vychegda River basin

	Месяц отлова рыбы и объем выборок													
Показатели	Февраль	Март Май		Июнь	Июль	Август	Сентябрь	Декабря						
	n = 15													
Общее число:														
видов	14	16	14	12	8	9	7	13						
особей	1518	1158	1310	726	323	504	592	978						
Общее значение условной биомассы	399.7	396.8	360.9	204.8	100.7	146.9	146.4	302.2						
Количество видов:														
автогенных	11	14	12	10	6	7	5	11						
аллогенных	3	2	2	2	2	2	2	2						
Доля особей видов:														
автогенных	0.191	0.388	0.279	0.215	0.198	0.063	0.030	0.13						
аллогенных	0.809	0.612	0.721	0.785	0.802	0.937	0.970	0.86						
Доля биомассы видов:														
автогенных	0.248	0.569	0.364	0.328	0.399	0.226	0.053	0.319						
аллогенных	0.752	0.431	0.636	0.672	0.601	0.774	0.947	0.68						
Количество видов-специалистов	3	5	4	3	2	1	1	4						
Доля видов-специалистов:														
особей	0.049	0.074	0.164	0.128	0.050	0.008	0.002	0.06						
биомассы видов	0.044	0.070	0.142	0.106	0.036	0.006	0.002	0.06						
Количество видов-генералистов	11	11	10	9	6	8	6	9						
Доля видов-генералистов:														
особей	0.951	0.926	0.836	0.872	0.950	0.992	0.998	0.93						
биомассы видов	0.956	0.930	0.858	0.894	0.964	0.994	0.998	0.93						
Доминантный вид:														
по числу особей				lchtyocotylur	us variegatus	5								
	ı													

Ichtyocotylurus variegatus Ichthyocotylurus variegatus

по значению биомассы

Таблица 2 (подолжение)


		Месяц отлова рыбы и объем выборок												
Показатели	Февраль	Март	Май	Июнь	Июль	Август	Сентябрь	Декабрь						
		n = 15												
Характеристика доминантного вида	ал/г*	ал/г	ал/г	ал/г	ал/г	ал/г	ал/г	ал/г						
Индекс Бергера-Паркера:						,								
по числу особей	0.793	0.579	0.636	0.745	0.697	0.883	0.921	0.832						
по биомассе	0.743	0.417	0.623	0.651	0.551	0.747	0.918	0.664						
Выравненность видов:														
по числу особей	0.322	0.522	0.448	0.417	0.521	0.246	0.188	0.316						
по биомассе	0.387	0.587	0.533	0.498	0.545	0.428	0.201	0.463						
Индекс Шеннона:														
по числу особей	0.850	1.447	1.182	1.035	1.083	0.541	0.366	0.810						
по значениям биомассы	1.021	1.626	1.405	1.237	1.133	0.940	0.319	1.187						
Сумма ошибок уравнений регрессии	0.214	0.295	0.335	0.274	0.434	0.299	0.319	0.210						

Примечание. *ал — аллогенный вид, г — вид-генералист.

Таблица 3
Приведенные линейные размеры (мм) паразитов ерша
Тable 3. The shown linear sizes (mm) of the parasites of Gymnocephalus cernuus

		Месяц отлова рыбы															
Виды паразитов	1	Февраль		M	Март М		Лай Ин		онь Иі		оль	Август		Сентябрь		Декабрь	
		n	In (<i>nl</i>)	n	In (<i>nl</i>)	n	ln (nl)	n	ln (nl)	n	ln (nl)	n	ln (<i>nl</i>)	n	ln (<i>nl</i>)	n	ln (nl)
Henneguya creplini	1.00	15	2.71	123	4.81	24	3.18	31	3.43	33	3.50	12	2.48	2	0.69	12	2.48
Dermocystidium percae	0.68	2	0.31	1	-0.38	2	0.31	0	_	0	_	1	-0.38	0		1	-0.38
Dactylogyrus amphibot- rium	0.22	57	2.53	72	2.77	94	3.03	49	2.38	12	0.97	4	-0.12	1	-1.51	27	1.79
D. hemiamphibotrium	0.32	0	l —	1	-1.14	1	-1.14	0	-	0	—	0	-	0	—	0	_
Gyrodactylus cernuae	0.25	4	-0.02	8	0.68	106	3.26	43	2.36	4	-0.02	0	_	0		8	0.68
G. longiradis	0.28	14	1.38	3	-0.16	14	1.38	1	-1.26	0	-	0	-	0	—	24	1.92
Proteocephalus cernuae	4.37	2	-0.12	2	2.17	0	—	0	—	0		0	-	0		1	1.48
Triaenophorus nodulo-	15.71	0	l —	0		0		0	—	0	_	1	2.75	0	—	0	l —
sus																	
Bunodera luciopercae	0.45	0	<u> </u>	18	2.08	11	1.59	12	1.68	1	-0.81	4	0.58	11	1.59	14	1.83
Phyllodistomum folium	0.42	2	-0.18	14	1.76	3	0.22	1	-0.88	0	-	0	—	0		1	-0.88
Diplostomum spathace-	0.15	23	1.22	38	1.72	32	1.55	29	1.45	34	1.61	27	1.38	29	1.45	34	1.61
um																	
D. volvens	0.15	1	-1.92	0	-	0	-	0	_	0	-	0	-	0		0	<u> </u>
Ichthyocotylurus varie- gatus	0.25	1204	5.69	671	5.11	912	5.42	541	4.89	225	4.02	445	4.70	545	4.90	814	5.30
Camallanus lacustris	1.04	9	—	1	0.04	0		0	_	0	_	1	0.04	0	-	0	l —
Raphidascaris acus	0.10	23	0.88	19	0.70	1	-2.26	2	-1.56	7	-0.31	0	—	3	-1.16	4	-0.87
Neoechinorhynchus rutili	3.24	13	3.74	11	3.57	11	3.57	2	1.87	0	_	0	—	0		17	4.01
Unionidae gen. sp.	0.21	157	2.94	173	3.03	94	2.42	14	0.52	0	_	9	0.08	0	—	21	0.92
Ergasilus briani	0.34	1	-1.07	3	0.03	5	0.54	1	-1.07	7	0.87	0	—	1	-1.07	0	—

Примечание. *п*— число собранных особей паразита (для миксоспоридий — цист); *l* — приведенный линейный размер вида (среднее геометрическое из произведенеия максимальных значений длины, ширины и высоты тела паразита данного вида); ln — натуральный логарифм; *nl* — условная биомасса (приведенный линейный размер вида, умноженный на число найденных его особей).

Вариационные кривые условных биомасс паразитов ерша из р. Вычегды.

a — рыба отловлена 21 февраля; b — 26 марта; b — 21 мая; b — 19 июня; b — 19 июля; b — 18 августа; b — 20 сентября; b — 21 декабря. По оси абецисе — натуральные логарифмы значений условных биомасс видов паразитов, образующих сообщество; по оси ординат — натуральные логарифмы порядковых номеров последовательных (по значениям условных биомасс) членов ряда. Прямые параллельные оси абецисе — теоретически расечитанные критические уровни.

The variational curves of the tentative biomasses of the parasites of Gymnocephalus cernuus from the Vychegda River

Gyrodactylus longiradix, в феврале — I. variegates и Neoechinorhynchus rutili, в марте — I. variegates, Henneguya creplini, N. rutili, глохидии и Dactylogyrus amphibotrium. В эти месяцы возрастают видовое разнообразие сообщества паразитов ерша, число их особей и биомасса (табл. 1, 2), обнаружены гиродактилюсы, глохидии, молодые особи дактилогирусов (хитиноидные структуры уже сформированы) и скребней (в декабре длина тела червей до 0.3 мм, в феврале—марте — 0.5—1.0 мм). В декабре найдены только молодые особи Bunodera luciopercae, в феврале—марте — у червей этого вида в матке появляются яйца. Phyllodistomum folium в декабре представлен только отмирающими особями, а в феврале—марте — молодыми. В декабре Ergasilus briani не обнаружен, в феврале—марте рачки были без яйцевых мешков. Повышается зараженность метацеркариями Diplostomum и Ichthyocotylurus ерша.

В мае структура сообщества паразитов ерша напоминает таковую в марте, но порядок расположения видов в группах меняется. Так, 1-я группа в мае, как и в марте, образована пятью видами, но их состав и порядок расположения уже иной (*I. variegates, N. rutili, G. cernuae, H. creplini, D. amphibotrium*). В мае зрелые скребни (длина тела до 1.0 мм), рачки с яйцевыми мешками, среди дактилогирусов встречены яйцекладущие особи, у червей *В. luciopercae* матки заполнены яйцами, *Р. folium* по-прежнему представлен незрелыми особями, но с размерами тела большими, чем в феврале—марте.

Рассматриваемое сообщество паразитов ерша в период с декабря по май состоит из наибольшего числа особей и характеризуется наивысшими значениями биомассы и видового разнообразия (табл. 1, 2). Ход описанных выше изменений в сообществе паразитов ерша с декабря по май сопровождается постепенным ростом суммы ошибок уравнений регрессии.

В июне структура сообщества также образована тремя группами видов, но в 1-ю группу входит уже на один вид меньше и порядок расположения оставшихся изменяется (*I. variegates*, *H. creplini*, *D. amphibotrium*, *G. cernuae*). В это время яйцекладка отмечена у дактилогирусов, *B. luciopercae*, скребней, рачков с яйцевыми мешками, снижается зараженность глохидиями. Сумма ошибок уравнений регрессии, отражающая сбалансированность биомасс, входящих в состав сообщества видов, падает до 0.274.

ОБСУЖДЕНИЕ

Итак, как и в предыдущих работах, посвященных решению этого вопроса (Доровских, 2002; Доровских, Голикова, 2004; Голикова, 2005; Степанов, 2007; Доровских, Степанов, 2009а), зарегистрировано 3, плавно переходящих одно в другое состояния паразитарного сообщества.

Первое отмечено в июле—сентябре. Оно отличается средними по сравнению с другими периодами значениями всех индексов видового разнообразия и наименьшим числом видов. Сообщество образовано 2 и в сентябре 3 группами видов. В последнем случае 1-я их группа образована только метацеркариями *I. variegates*. Паразиты представлены зрелыми, яйцекладущими, отмирающими особями и личиночными стадиями паразитов, использующих рыбу в качестве промежуточного хозяина. В июле у некото-

рых видов появляются особи нового поколения. Это сообщество в состоянии разрушения своей видовой структуры.

Второе состояние сообщества паразитов ерша существовало с декабря по март. В это время оно характеризовалось наибольшими значениями видового разнообразия паразитов, числа их особей и биомассы, ростом до максимальных величин индексов Шеннона и выравненности видов, высокими, но ниже чем в предыдущий период, значениями индекса доминирования, наличием в своей структуре трех групп паразитов, выделенных по соотношению условных биомасс видов. Сообщество большей частью состоит из молодых особей и личиночных стадий паразитов, у гиродактилюсов имелись зародыши в матке. Это сообщество в состоянии формирования своей видовой структуры.

Третье состояние рассматриваемого сообщества наблюдалось с мая по июнь. Оно отличается наличием в структуре, выделенной по соотношению условных биомасс составляющих его видов, трех групп паразитов, различающихся по аллометрическим показателям. Видовое разнообразие, число особей и биомасса паразитов снижаются от мая к июню, и оно ниже, чем в феврале. Паразиты в основном представлены зрелыми, яйцекладущими особями и личиночными стадиями видов, использующих рыбу как промежуточного хозяина. Это состояние сообщества, имеющего сформированную видовую структуру.

Таким образом, и при сезонных изменениях сообщества паразитов ерша также выделяются 3 его состояния. Они приурочены к срокам, отличным от таковых для сообществ кишечных гельминтов рыб, исследованных из водоемов умеренной зоны, а также сообществ паразитов гольяна и хариуса из бассейнов рек Вычегда и Печора. Формирование сообществ кишечных гельминтов угря (Anguilla anguilla) в Англии (Kennedy, 1997) и язя (Leuciscus idus) Рыбинского водохранилища (Жохов, 2003) начинается в начале лета. В мае их видовое богатство минимально, в августе — максимально. В условиях бассейнов рек Вычегда и Печора видовое богатство сообществ паразитов гольяна и хариуса максимально в июне, минимально — в августе. Формирование их видовой структуры отмечено в течение осенне-зимне-весеннего периода года, а разрушение в июле—сентябре (Доровских, Голикова, 2004; Степанов, 2007). У ерша наибольшее число видов паразитов отмечено в марте, наименьшее — в сентябре. Формирование видовой структуры сообщества паразитов ерша осуществляется в течение зимне-весеннего периода года, а разрушение в июле—сентябре.

БЛАГОДАРНОСТИ

Исследования проведены при финансовой поддержке программы «Развитие научного потенциала высшей школы на 2009—2010 годы» (проект № 2.1.1/5848).

Список литературы

- Голикова Е. А. 2005. Экология паразитов гольяна обыкновенного и их сообществ в условиях малых рек бассейна Вычегды: Автореф. дис. ... канд. биол. наук. Сыктывкар. 22 с.
- Доровских Г. Н. 2002. Паразиты пресноводных рыб северо-востока европейской части России (фауна, экология паразитарных сообществ, зоогеография): Автореф. дис. ... д-ра биол. наук. СПб. 50 с.
- Доровских Г. Н., Голикова Е. А. 2004. Сезонная динамика структуры компонентных сообществ паразитов гольяна речного *Phoxinus phoxinus* (L.). Паразитология. 38 (5): 413—425.
- Доровских Г. Н., Степанов В. Г. 2009а. Сезонная динамика структуры сообщества паразитов гольяна *Phoxinus phoxinus* (L.) в бассейне верхнего течения реки Северная Двина. Рыбоводство и рыбное хозяйство. 3:33—43.
- Доровских Г. Н., Степанов В. Г. 2009б. Методы сбора и обработки ихтиопаразитологических материалов: учебное пособие. Сыктывкар: Изд-во Сыктывкар. гос. ун-та. 132 с.
- Жохов Е. А. 2003. Сезонная динамика структуры сообщества кишечных гельминтов язя (*Leuciscus idus* L.) в Рыбинском водохранилище. Экология. 6: 454—458.
- Пугачев О. Н. 1999. Паразиты пресноводных рыб Северной Азии (фауна, экология паразитарных сообществ, зоогеография): Автореф. дис. ... д-ра биол. наук. СПб. 50 с.
- Русинек О. Т. 2005. Паразиты рыб озера Байкал: Автореф. дис. ... д-ра. биол. наук. СПб. 48 с.
- Русинек О. Т. 2007. Паразиты рыб озера Байкал (фауна, сообщества, зоогеография, история формирования). М.: Тов-во науч. изд. КМК. 71 с.
- Степанов В. Г. 2007. Экология паразитов гольяна *Phoxinus phoxinus* (L.) и хариуса *Thy-mallus thymallus* (L.) и их компонентные сообщества в бассейнах рек северо-востока европейской части России: Автореф. дис. ... канд. биол. наук. Борок. 26 с.
- Kennedy C. R. 1997. Long-term and seasonal changes in composition and richness of intestinal helminth communities in eels *Anguilla anguilla* of a isolated English river. Folia Parasitologica. 44: 267—273.

STRUCTURE OF THE COMPONENT COMMUNITY OF PARASITES OF GYMNOCEPHALUS CERNUUS (LINNAEUS, 1758) IN DIFFERENT SEASONS

G. N. Dorovskikh, V. G. Stepanov

Key words: fish parasites, component community, Gymnocephalus cernuus.

SUMMARY

In the conditions of middle stream of Vychegda River, the species diversity of parasite community associated with *Gymnocephalus cernuus* was found to be maximal in March and minimal in September. It is shown, that during a year the parasite community passes through the phases of development in December—March, completion in May—June, and destruction in July—September, which form the annual cycle of the community.