Leucotreton kurilense, a new genus and species of calcareous sponges of the family Sycanthidae (Porifera: Calcarea: Leucosolenida) from the northwestern Pacific Ocean, with contribution to taxonomy and nomenclature of related genera
K.E. Sanamyan
, N.P. Sanamyan
, A.D. Kukhlevskiy
& V.A. Shilov
Abstract. A calcareous sponge Leucotreton kurilense gen. et sp. nov. (Sycanthidae) is described from the area of the Kuril Islands. It differs from all members of the family Sycanthidae in its aquiferous system, which is intermediate between leuconoid and sylleibid. Taxonomic status and nomenclature of several taxa formerly assigned to Sycanthidae is discussed. It is shown that the genus Dermatreton Jenkin, 1908 does not belong to Sycanthidae but this name is a senior synonym of Breitfussia Borojevic et al., 2000 (Jenkinidae), syn. nov.; Dermatreton contains three species previously included in Breitfussia: D. chartaceum Jenkin, 1908, D. schulzei (Breitfuss, 1896), comb. nov. and D. vitiosum (Brøndsted, 1931), comb. nov. It is shown that Tenthrenodes Jenkin, 1908 should be considered as a junior synonym of Sycon Risso, 1827, syn. nov. A new genus Scytotreton gen. nov. (Sycanthidae) is created to accommodate two species originally described in the genera Dermatreton and Tenthrenodes, respectively: Scytotreton hodgsoni (Jenkin, 1908), comb. nov. and S. scotti (Jenkin, 1908), comb. nov.
Key words: biodiversity, Kuril Islands, North-West Pacific, Porifera, Calcarea, Calcaronea, Jenkinidae, Sycanthidae, Breitfussia, Dermatreton, Leucotreton, Scytotreton, Sycantha, Tenthrenodes, new combination, new genus, new species
Zoosystematica Rossica, 2022, 31(1): 143-153 ▪ Published online 27 June 2022
https://doi.org/10.31610/zsr/2022.31.1.143 ▪ Open full article 
References
Alvizu A., Eilertsen M.H., Xavier J.R. & Rapp H.T. 2018. Increased taxon sampling provides new insights into the phylogeny and evolution of the subclass Calcaronea (Porifera, Calcarea). Organisms Diversity & Evolution, 18: 279–290. https://doi.org/10.1007/s13127-018-0368-4
Borojevic R., Boury-Esnault N. & Vacelet J. 2000. A revision of the supraspecific classification of the subclass Calcaronea (Porifera, class Calcarea). Zoosystema, 22(2): 203–263.
Chombard C., Boury-Esnault N. & Tillier S. 1998. Reassessment of homology of morphological characters in tetractinellid sponges based on molecular data. Systematic Biology, 47(1): 351–366. https://doi.org/10.1080/106351598260761
Dendy A. & Row R.W.H. 1913. The classification and phylogeny of the calcareous sponges with a reference list of all the described species. Proceedings of the Zoological Society of London, 83: 704–813. https://doi.org/10.1111/j.1469-7998.1913.tb06152.x
Hoang D.T., Chernomor O., Haeseler A., Minh B.Q. & Vinh L.S. 2018. UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35: 518–522. https://doi.org/10.1093/molbev/msx281
Jenkin C.F. 1908. Porifera. III. Calcarea. National Antarctic Expedition, 1901–1904. Natural History, 4(Zoology): 1-49.
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., Haeseler A. & Jermiin L.S. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14: 587–589. https://doi.org/10.1038/nmeth.4285
Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4): 772–780. https://doi.org/10.1093/molbev/mst010
Kumar S., Stecher G. & Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33: 1870–1874. https://doi.org/10.1093/molbev/msw054
Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics, 30(22): 3276–3278. https://doi.org/10.1093/bioinformatics/btu531
Llewellyin B. 2018. StainsFile. The internet resource for histotechnologists [online]. http://stainsfile.info [updated January 2019; viewed 16 May 2022].
Nguyen L.T., Schmidt H.A., Haeseler A. & Minh B.Q. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32: 268–274. https://doi.org/10.1093/molbev/msu300
Rapp H.T. 2015. A monograph of the calcareous sponges (Porifera, Calcarea) of Greenland. Journal of the Marine Biological Association of the United Kingdom, 95(7): 1395–1459. https://doi.org/10.1017/S0025315413001070
Rapp H.T., Janussen D. & Tendal O.S. 2011. Calcareous sponges from abyssal and bathyal depths in the Weddell Sea, Antarctica. Deep-Sea Research II, 58: 58–67. https://doi.org/10.1016/j.dsr2.2010.05.022
Voigt O. & Wörheide G. 2016. A short LSU rRNA fragment as a standard marker for integrative taxonomy in calcareous sponges (Porifera: Calcarea). Organisms Diversity & Evolution, 16(1): 53–64. https://doi.org/10.1007/s13127-015-0247-1
Wörheide G. & Hooper J.N.A. 1999. Calcarea from the Great Barrier Reef. 1: Cryptic Calcinea from Heron Island and Wistari Reef (Capricorn-Bunker Group). Memoirs of the Queensland Museum, 43(2): 859–891.