Скорость полета певчего дрозда (Turdus philomelos) во время осенней ночной миграции

М.В. Воротков и А.Ю. Синельщикова

Труды Зоологического института РАН, 2014, 318(1): 12–23   ·   https://doi.org/10.31610/trudyzin/2014.318.1.12

Полный текст  

Резюме

Мигрирующих ночью птиц наблюдали с помощью электронно-оптической системы регистрации. Из потока ночных мигрантов певчих дроздов выделяли на основе линейных размеров, рисунка полета и фенологических данных. Воздушная скорость полета дроздов варьирует в зависимости от направления и скорости ветра: при увеличении встречной компоненты ветра она увеличивается относительно своего значения при штиле, а при увеличении попутной компоненты ветра – уменьшается. Воздушная скорость дроздов, летящих миграционным полетом, пропорциональна эффективной частоте взмахов, рассчитанной для серий взмахов и пауз между ними. При этом в условиях полета при разных ветрах птицы поддерживают оптимальную физиологическую частоту взмахов в узком диапазоне, а изменяют свою воздушную скорость преимущественно за счет длительности инерционной фазы полета. Воздушная скорость мигрирующих осенью певчих дроздов в наибольшей степени соответствует теоретически ожидаемой скорости, при которой энергетическая стоимость полета минимальна.

Ключевые слова

ночная миграция, певчий дрозд, скорость полета, частота взмахов

Поступила в редакцию 12 августа 2013 г.  ·  Принята в печать 5 февраля 2014 г.  ·  Опубликована 25 марта 2014 г.

Литература

Alerstam T. 1981. The course and timing of bird migration. In: D.J. Aidley (Ed.). Society for Experimental Biology seminar series. Cambridge University Press, 13: 9–54.

Alerstam T. 1990. Bird Migration. Cambridge University Press, Cambridge, 420 p.

Alerstam T. 2000. Bird migration performance on the basis of flight mechanics and trigonometry. In: P. Domenici and R.W. Blake (Eds.). Biomechanics in Animal Behaviour. BIOS Scientific Publishers Ltd, Oxford: 105–124.

Alerstam T. and Hedenström A. 1998. The development of bird migration theory. Journal of Avian Biology, 29: 343–369. https://doi.org/10.2307/3677155

Alerstam T. and Lindström Å. 1990. Optimal bird migration: the relative importance of time, energy, and safety. In: E. Gwinner (Ed.). Bird migration: physiology and ecophysiology. Springer, Berlin: 331–351. https://doi.org/10.1007/978-3-642-74542-3_22

Alerstam T., Rosén M., Bäckman J., Ericson P.G.P. and Hellgren O. 2007. Flight speeds among bird species: allometric and phylogenetic effects. PLoS Biology, 5: 1656–1662. https://doi.org/10.1371/journal.pbio.0050197

Bäckman J. and Alerstam T. 2001. Confronting the winds: orientation and fight behaviour of the roosting swift, Apus apus. Proceedings of the Royal Society B, 268: 1081–1087. https://doi.org/10.1098/rspb.2001.1622

Baushev A.N. and Sinelschikova A. 2007. On a probabilistic model for the numerical estimation of the nocturnal migration of birds. Mathematical Biosciences, 205: 44–58. https://doi.org/10.1016/j.mbs.2006.01.001

Bloch R. and Bruderer B. 1982. The air speed of migrating birds and its relationship to the wind. Behavioral Ecology and Sociobiology, 11: 19–24. https://doi.org/10.1007/BF00297661

Bolshakov C., Žalakevičius M. and Švažas S. 2002. Nocturnal migration of thrushes in the Eastern Baltic region. Vilnius, 117p.

Bolshakov C.V., Vorotkov M.V., Sinelschikova A., Bulyuk V.N. and Griffiths M. 2010. Application of the Optical-Electronic Device for the study of specific aspects of nocturnal passerine migration. Avian Ecology and Behaviour, 18: 23–51.

Bolshakov C.V., Bulyuk V.N., Sinelschikova A.Y. and Vorotkov M.V. 2013. Influence of the vertical light beam on numbers and flight trajectories of night-migrating songbirds. Avian Ecology and Behaviour, 24: 35–49.

Bruderer B. and Boldt A. 2001. Flight characteristic of birds: I. Radar measurements of speed. Ibis, 143: 178–204. https://doi.org/10.1111/j.1474-919X.2001.tb04475.x

Bruderer B., Liechti F. and Bilo D. 2001. Flexibility in flight behaviour of Barn Swallow (Hirundo rustica) and House Martin (Delichon urbica) tested in a wind tunnel. The Journal of Experimental Biology, 204: 1473–1484. https://doi.org/10.1242/jeb.204.8.1473

Bruderer B., Peter D., Boldt A. and Liechti F. 2010. Wing-beat characteristics of birds recorded with tracking radar and cine camera. Ibis, 152(2): 272–91. https://doi.org/10.1111/j.1474-919X.2010.01014.x

Cochran W.W. and Wikelski M. 2005. Individual migratory tactics of New World Catharus thrushes: current knowledge and future tracking options from space. In: R. Greenberg and P. Marra (Ed.). Birds of Two Worlds: Ecology and Evolution of Migration. Johns Hopkins University Press, Baltimore: 274–289.

Cochran W.W., Bowlin M.S. and Wikelski M. 2008. Wingbeat frequency and flap-pause ratio during natural migratory flight in thrushes. Integrative and Comparative Biology, 48(1): 134–151. https://doi.org/10.1093/icb/icn044

Griffiths M.E. 1970. Wingbeat frequencies and flight patterns of the more common migrant birds of the British Isles and Europe. Report No. 9 for the Ministry of Technology. London, 11 p.

Hedenström A. and Alerstam T. 1995. Optimal flight speed of birds. Philosophical Transactions of the Royal Society of London B. Biological Sciences, 348: 471–487. https://doi.org/10.1098/rstb.1995.0082

Hedenström A., Alerstam T., Green M. and Gudmundsson G.A. 2002. Adaptive variation of airspeed in relation to wind, altitude and climb rate by migrating birds in the Arctic. Behavioral Ecology and Sociobiology, 52: 308–317. https://doi.org/10.1007/s00265-002-0504-0

Hedenström A., Rosén M. and Spedding G.R. 2006. Vortex wakes generated by robins Erithacus rubecula during free flight in a wind tunnel. Journal of Royal Society, Interface, 3: 263–276. https://doi.org/10.1098/rsif.2005.0091

Henningsson P., Karlsson H., Bäckman J., Alerstam T. and Hedenström A. 2009. Flight speeds of swifts (Apus apus): seasonal differences smaller than expected. Proceedings of the Royal Society B, 276: 2395–2401. https://doi.org/10.1098/rspb.2009.0195

Henningsson P., Spedding G.R. and Hedenström A. 2008. Vortex wake and fight kinematics of a swift in cruising fight in a wind tunnel. The Journal of Experimental Biology, 211: 717–730. https://doi.org/10.1242/jeb.012146

Karlsson H., Henningsson P., Bäckman J., Hedenström A. and Alerstam T. 2010. Compensation for wind drift by migrating swifts. Animal Behaviour, 80: 399–404. https://doi.org/10.1016/j.anbehav.2010.05.023

Klaassen R.H.G., Alerstam T., Carlsson P., Fox J.F. and Lindström A. 2011. Great flights by great snipes: long and fast non-stop migration over benign habitats. Biology Letters of the Royal Society. Published online https://doi.org/10.1098/rsbl.2011.0343

Liechti F 1995. Modeling optimal heading and airspeed of migrating birds in relation to energy expenditure and wind influence. Journal of Avian Biology, 26: 310–316. https://doi.org/10.2307/3677049

Liechti F. 2006. Birds: blowin’ by the wind? Journal of Ornithology, 147: 202–211. https://doi.org/10.1007/s10336-006-0061-9

Liechti F. 2007. Radar ornithology – past experiences and future challenges. Proceedings of the 6th Conference of the European Ornithologists’ Union, Vienna: 107.

Liechti F. and Bruderer B. 1998. The relevance of wind for optimal migration theory. Journal of Avian Biology, 29: 561–568. https://doi.org/10.2307/3677176

Liechti F., Bruderer B. and Paproth H. 1995. Quantification of nocturnal bird migration by moon-watching: comparison with radar and infrared observations. Journal of Field Ornithology, 66: 457–468.

Liechti F., Hedenström A. and Alerstam T. 1994. Effects of sidewinds on optimal flight speed of birds. Journal of Theoretical Biology, 170: 219–225. https://doi.org/10.1006/jtbi.1994.1181

Norberg U.M.L. 1990. Vertebrate Flight: mechanics, physiology, morphology, ecology and evolution. Zoophysiology Series. Vol. 27. Springer-Verlag, Berlin, 298 p.

Norberg U.M.L. 2004. Bird flight. Acta Zoologica Sinica, 50(6): 921–935.

Park K.J., Rosén M. and Hedenström A. 2001. Flight kinematics of the barn swallow Hirundo rustica over a wide range of speeds in a wind tunnel. The Journal of Experimental Biology, 204: 2741–2750. https://doi.org/10.1242/jeb.204.15.2741

Payevsky V.A., Shapoval A. and Vysotsky V.G. 2005. Spatial distribution of thrushes migrating through the Eastern Baltic area as shown by ring recoveries. OMPO Newsletters, 25: 5–12.

Pennycuick C.J. 1968. Power requirements for horizontal flight in the pigeon (Columba livia). The Journal of Experimental Biology, 49: 527–555. https://doi.org/10.1242/jeb.49.3.527

Pennycuick C.J. 1996. Wingbeat frequency of birds in steady cruising flight: new data and improved predictions. The Journal of Experimental Biology, 199: 1613–1618. https://doi.org/10.1242/jeb.199.7.1613

Pennycuick C.J. 2008. Modelling the Flying Bird. Academic Press, 480 p.

Rayner J.M.V. 1985. Flight, speeds of. In: B. Campbell and E. Lack. (Еds.) A dictionary of birds. Poyser, Staffordshire, England: 224–226.

Rayner J.M.V. 1995. Flight mechanics and constraints on flight performance. Israel Journal of Zoology, 41: 321–342.

Richardson W.J. 1978. Timing and amount of bird migration in relation to weather: a review. Oikos, 30(2): 224–272. https://doi.org/10.2307/3543482

Richardson W.J. 1990. Timing of bird migration in Relation to Weather: Update Review. In: E. Gwinner (Ed.). Bird Migration. Springer-Verlag, Berlin: 78–101. https://doi.org/10.1007/978-3-642-74542-3_6

Schmaljohann H., Liechti F., Bächler E., Streuri T. and Bruderer B. 2008. Quantification of bird migration by radar – a detection probability problem. Ibis, 150: 342–355. https://doi.org/10.1111/j.1474-919X.2007.00797.x

Sinelschikova A. and Sokolov L.V. 2004. Long-term monitoring of the timing of migration on thrushes (Turdus philomelos, T. iliacus) in the Eastern Baltic. Avian Ecology and Behaviour, 12: 11–30.

Sinelschikova A., Vorotkov M., Bulyuk V., Bolshakov C.V. and Griffiths M.E. 2009. Electronic-optical system and its application for the study of nocturnal migration of birds. Abstracts of the 7th Conference of the European Ornithologists’ Union 21–26 August 2009, University of Zurich, Switzerland: 78.

Stark H. 1996. Flugmechanik Nachts Ziehender Kleinvögel. PhD Thesis, Universität Basel, 395 p.

Videler J. 2005. Avian Flight. Oxford University Press, Oxford, 258 p. https://doi.org/10.1093/acprof:oso/9780199299928.001.0001

Vorotkov M., Sinelschikova A. and Griffiths M. 2009. Optical Matrix Device: Technical aspects of a new tool for the detection and recording of small nocturnal aerial targets. The Journal of Navigation, 62: 1–9. https://doi.org/10.1017/S0373463308005031

Wege L.M. and Raveling D.G. 1984. Flight speed and directional responses to wind by migrating Canada geese. Auk, 101: 342–348. https://doi.org/10.1093/auk/101.2.342

 

© Зоологический институт Российской академии наук
Последнее изменение: 25 марта 2024 г.