Итоги и перспективы цито- и генетического изучения «криптической» группы из семейства Lacertidae

Л.А. Куприянова и Л.Д. Сафронова

Труды Зоологического института РАН, 2020, 324(1): 100–107   ·   https://doi.org/10.31610/trudyzin/2020.324.1.100

Полный текст  

Резюме

В настоящем сообщении обобщены полученные к настоящему времени результаты хромосомных и молекулярных исследований вида живородящая ящерица Zootoca vivipara (Lichtenstein, 1823) (Lacertidae) из многочисленных географически разобщенных популяций Европы и Азии. Кратко рассмотрены вопросы о кариотипической изменчивости живородящей ящерицы, разнообразии ее Zw и множественных Z1Z2W половых хромосом, процессах их преобразования и эволюционных последствиях последних. Стабильность структуры сформировавшихся кариотипов cлужит интегрирующим признаком и позволяет объединять сходные популяции в группы, занимающие самостоятельные географические ареалы. Эти цитогенетические результаты совпадают с молекулярными данными по изучению митохондриальной и ядерной ДНК особей. В итоге все полученные сведения позволяют сделать вывод о том, что Z. vivipara представляет собой «криптическую» группу, состоящую из таксонов разного ранга. Кроме того, новые данные о формировании и поведении СК (синаптонемный комплекс) половых хромосом в процессе мейоза и молекулярно-цитогенетические данные о транспозонных элементах (ТЕ) в геноме живородящей ящерицы, их локализации в определенных районах хромосом свидетельствуют об их важной роли в эволюционных процессах видообразования при формировании криптических таксонов.

Ключевые слова

живородящая ящерица Zootoca vivipara, кариотип, криптические таксоны, мейотические СК (синаптонемный комплекс) хромосомы, множественные половые хромосомы, формо-, подвидо- и видообразование

Поступила в редакцию 4 февраля 2020 г.  ·  Принята в печать 18 февраля 2020 г.  ·  Опубликована 24 марта 2020 г.

Литература

Capriglione T., Olmo E., Odierna G. and Kupriyanova L. 1994. Mechanisms of differentiation in the sex chromosomes of some Lacertidae. Amphibia–Reptilia, 15: 1–8. https://doi.org/10.1163/156853894X00506

Guillaume Cl.-P., Heulin B. and Beshkov V. 1997. Biogeography of Lacerta (Zootoca) vivipara: reproductive mode and enzyme phenotypes in Bulgaria. Ecography, 20: 240-246. https://doi.org/10.1111/j.1600-0587.1997.tb00367.x

Kichigin I. and Trifonov V. 2013. Genomic structure and sex determination in Sguamate reptiles. Tsitologia, 55(4): 253–258. [In Russian].

King M. 1977. The evolution of sex chromosomes in lizards. In: Evolution and reproduction. Canberra: Austra­lian Acad. Sci. 55–60.

Kupriyanova L. 1989. Cytogenetic evidence for genome interaction in hybrid lacertid lizards. Evolution and ecology of unisexual vertebrates. Bull. Albany, N.Y. State Mus., 400: 41–46.

Kupriyanova L. 2004. Cytogenetical approaches to the problem of form-formation and subspeciation in the complex Lacerta (Zootoca) vivipara (Lacertidae, Sauria). Tsitologia, 46(7): 649–658. [In Russian].

Kupriyanova L. 2013. Modern chromosomal and molecular investigations of the Eurasian species Zootoca vivipara (Lichtenstein, 1823) (Lacertidae): results and perstectives. P. 25–31. In: Modern herpetology: problems and ways of their solutions. Collection of papers of the First International Conference of the young herpetologists of Russia and neighboring countries (Saint-Petersburg, Russia, 25–27 November 2013). Zoological institute of RAS. Saint-Petersburg, 2013. 169. [In Russian].

Kupriyanova L. and Rudi E. 1990. Comparative karyological analysis of Lacerta vivipara (Lacertidae, Sauria) populations. Zoological Journal, 69: 93–101. [In Russian].

Kupriyanova L., Melashchenko O. and Alekseev P. 2007. Karyological investigations of populations of the lizard Zootoca vivipara (Juaquin, 1787) from the Baltic Sea Basin (western region of Russia). Tsitologia, 49(5): 601–609. [In Russian].

Kupriyanova L., Niskanen M. and Oksanen T. 2014. Karyotype dispersal of the common lizard Zootoca vivipara (Lichtenstein, 1823) in eastern and northeastern Fennoscandia. Memoranda Society Fauna Flora Fennica, 90: 83–90.

Kupriyanova L., Safronova L. and Chekunova A. 2019. Meiotic chromosomes, synaptonemal сomplexes in a female viviparous lizard (Zootoca vivipara) in prophase 1 of meiosis. Russian Journal Genetics, 55(6): 728–733. https://doi.org/10.1134/S1022795419060085

Mayer W., Böhme W., Tiedemann E. and Bischoff W. 2000. On oviparous populations of Zootova vivipara (Jacquin, 1787) in south-eastern Central Europe and their phylogenetic relationships to neighboring viviparous and south-west oviparous populations (Squamata: Sauria: Lacertidae). Herpetozoa, 13(1/2): 59–69.

Odierna G., Kupriyanova L., Capriglione T. and Ol­mo E. 1993. Further data on sex chromosomes of Lacertidae and a hypothesis on their evolutionary trend. Amphibia–Reptilia, 14: 1–11. https://doi.org/10.1163/156853893X00147

Odierna G., Heulin B., Guillaume C., Vogrin N., Aprea G., Capriglione T., Surget-Groba J. and Ku­priyanova L. 2001. Evolutionary and biogeographical implications of the karyological variations in the oviparous and viviparous forms of the lizard Lacerta (Zootoca) vivipara. Ecography, 24: 332–340. https://doi.org/10.1034/j.1600-0587.2001.240311.x

Olmo E. 2005. Rate of chromosome changes and speciation in reptiles. Genetics, 125: 185–203. https://doi.org/10.1007/s10709-005-8008-2

Olmo E., Odierna G. and Capriglione T. 1987. Evolution of sex-chromosomes in lacertid lizards. Chromosoma, 96: 33–38. https://doi.org/10.1007/BF00285880

Petraccioli A., Guarino F., Kupriyanova L., Mezzasalma M., Odierna G., Picariello O. and Capriglione T. 2019. Isolation and characterization of interspersed repeated sequences in the European common lizard, Zootoca vivipara, and their conservation in Squamata. Cytogenetics Genome Research, 157(2): 65–76. https://doi.org/10.1159/000497304

Pokorná M., Giovannotti M., Kratochvil L., Kasai F., Trifonov V., O’Brien P.C.M., Caputo V., Olmo E., Ferguson-Smith M. and Rens W. 2011. Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence. Chromosoma, 120: 455–468. https://doi.org/10.1007/s00412-011-0322-0

Recknagel H., Kamenos N. and Elmer K. 2018. Common lizards break Dollo’s law of irreversibility: Genome-wide phylogenomics support a single origin of viviparity and re-evolution of oviparity. Molecular Phylogenetics and Evolution, 127: 579–588. https://doi.org/10.1016/j.ympev.2018.05.029

Rovatsos M., Vukic J., Altmanova M., Pokorna M., Moravec J. and Kratochvil L. 2016. Conservation of sex chromosomes in lacertid lizards. Molecular ecology, 25: 3120–3128. https://doi.org/10.1111/mec.13635

Safronova L. and Kupriyanova L. 2016. Metaphase and meiotic chromosomes, synaptonemal complexes (SC) of the lizard Zootoca vivipara. Russian Journal Genetics, 52(11): 1186–1191. https://doi.org/10.1134/S1022795416110120

Singh L., Pundom J. and Jones K. 1976. Satellite DNA and evolution of sex chromosomes. Chromosoma. 59(1): 43–62. https://doi.org/10.1007/bf00327708

Srikulnath K., Matsubara K., Uno Y., Nishida C., Olsson M. and Matsuda Y. 2014. Identification of the linkage group of the Z sex chromosomes of the sand lizard (Lacerta agilis, Lacertidae) and elucidation of ka­ryotype evolution in lacertid lizards. Chromosoma, 123: 563–575. https://doi.org/10.1007/s00412-014-0467-8

Surget-Groba Y., Heulin B., Guillaume C., Thorpe R., Kupriyanova L., Vogrin N., Maslak R., Mazzotti S., Venczel M., Ghira I., Odierna G., Leontyeva O., Monney J. and Smith N. 2001. Intraspecific phylogeography of Lacerta vivipara and the evolution of viviparity. Molecular Phylogenetics and Evolution, 18: 449–459. https://doi.org/10.1006/mpev.2000.0896

Surget-Groba Y., Heulin B., Guillaume C., Puly M., Semenov D., Orlova V., Kupriyanova L., Chira I. and Smajda B. 2006. Multiple origins of viviparity, or reversal from viviparity to oviparity? The European common lizard (Zootoca vivipara, Lacertidae) and the evolution of parity. Biological Journal Linnean Society, 87: 1–11. https://doi.org/10.1111/j.1095-8312.2006.00552.x

Stegniy V.N. 2019. Genetics of saltational speciation and systemic mutations. Tomsk. Publishing House of Tomsk State University, 2019. 262 p. [In Russian].

Wright J. W. 1973. Evolution of the X1X2Y sex chromosome mechanism in the scincid lizard Scincella lat­terale (Say). Chromosoma, 43(1): 101–108.

 

© Зоологический институт Российской академии наук
Последнее изменение: 25 марта 2024 г.