Эвтрофирование Волгоградского водохранилища: влияние климатической трансформации или сукцессионных процессов?

Е.А. Шашуловская, С.А. Мосияш и И.Н. Далечина

Труды Зоологического института РАН, 2023, 327(3): 390–406   ·   https://doi.org/10.31610/trudyzin/2023.327.3.390

Полный текст  

Резюме

Показаны изменения основных биогенных элементов – фосфора и азота, а также количественных и структурных характеристик фитопланктона Волгоградского водохранилища в 2001–2021 гг. В условиях глобальной макроклиматической трансформации – изменения термического режима, внутригодового перераспределения водного стока и уменьшения количества осадков, отмечены отрицательные тренды содержания соединений минерального азота – аммония и нитратов. В генезисе фосфатов уменьшилась роль процессов внутри водоема и возросло влияние внешних гидрологических факторов. Установлены отрицательные тренды общей биомассы фитопланктона, а также диатомовых и зеленых водорослей. Отмечено увеличение биомассы Cyanobacteria. Изменилось соотношение таксономических групп фитопланктона: снизилась доля диатомовых при увеличении цианобактерий, криптофитовых и динофитовых водорослей. Отрицательные тренды рассматриваемых показателей пелагиали указывают на процессы регрессивной сукцессии в очередном витке циклических процессов, причиной которых могли стать изменившиеся климатические условия. В то же время повышение биологической активности сообществ бентали (высшей водной растительности) свидетельствует о продолжающемся эвтрофировании водоема по макрофитному типу.

Ключевые слова

азот, высшая водная растительность, изменение климата, сукцессионные процессы, фитопланктон, фосфор, эвтрофирование

Поступила в редакцию 27 января 2023 г.   ·  Принята в печать 27 июля 2023 г.  ·  Опубликована 25 сентября 2023 г.

Литература

A report on climate features on the territory of the Russian Federation in 2021. 2022. Roshydromet, Moscow, 104 p. [In Russian].

Abonyi A., Kiss K.T., Hidas A., Borics C., Varbiro G. and Acs E. 2020. Cell size decrease and altered size structure of phytoplankton constrain ecosystem functioning in the Middle Danube River over multiple decades. Ecosystems, 23(6): 1254–1264. https://doi.org/10.1007/s10021-019-00467-6

Binzer A., Guill C., Rall B.C. and Brose U. 2016. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure. Global Change Biology, 22(1): 220–227. https://doi.org/10.1111/gcb.13086

Brito A.C., Moita T., Gameiro C., Silva T., Anselmo T. and Brotas V. 2015. Changes in the phytoplankton composition in a temperate estuarine system (1960 to 2010). Estuaries and Coasts, 38: 1678–1691. https://doi.org/10.1007/s12237-014-9900-8

Cherenkova E.A. and Sidorova M.V. 2021. On the impact of insufficient atmospheric moistening on the low annual discharge of large rivers in European Russia. Water Resources, 48(3): 351–360. https://doi.org/10.1134/S0097807821030064

Chorus I. and Spijkerman E. 2021. What Colin Reynolds could tell us about nutrient limitation, N:P ratios and eutrophication control. Hydrobiologia, 848: 95–111. https://doi.org/10.1007/s10750-020-04377-w

Chou Q., Nielsen A., Andersen T.K., Hu F., Chen W., Cao T., Ni L., Søndergaard M., Johansson L.S., Jeppesen E. and Trolle D. 2021. The impacts of extreme climate on summer-stratified temperate lakes: Lake Søholm, Denmark, as an example. Hydrobiologia, 848: 3521–3537. https://doi.org/10.1007/s10750-021-04607-9

Dalechina I.N. and Jayani E.A. 2014. Dynamics of the species composition and quantitative indicators of phytoplankton in the reservoirs of the Lower Volga for 2003–2013. Materials of the international scientific conference, dedicated to the 100th anniversary of GosNIORKh (October 6–10, Saint-Petersburg): Fishery reservoirs of Russia: fundamental and applied research. GosNIORKh, Saint Petersburg: 287–292. [In Russian].

Drizo A. 2020. Phosphorus pollution control – policies and strategies. John Wiley & Sons, Hoboken, 155 р. https://doi.org/10.1002/9781118825518

Environmental regulatory document Federal 14.1:2:3.1-95. 2017. Method of measuring the mass concentration of ammonium ions in natural and wastewater by photometric method with Nessler reagent. Moscow, 19 p.

Environmental regulatory document Federal 14.1:2:4.3-95. 2011. Method of measuring the mass concentration of nitrite ions in drinking, surface and wastewater by photometric method with Griss reagent. Moscow, 22 p.

Environmental regulatory document Federal 14.1:2:4.4-95. 2011. Method of measuring the mass concentration of nitrate ions in drinking, surface and wastewater by photometric method with salicylic acid. Moscow, 15 p.

Environmental regulatory document Federal 14.1:2:4.112-97. 2011. Method of measuring the mass concentration of phosphate ions in drinking, surface and wastewater by photometric method with ammonium molybdate. Moscow, 16 p.

Erratt K.J., Creed I.F. and Trick C.G. 2018. Comparative effects of ammonium, nitrate and urea on growth and photosynthetic efficiency of three bloom-forming cyanobacteria. Freshwater Biology, 63: 626–638. https://doi.org/10.1111/fwb.13099

Gashkina N.A. 2011. Zonal features of the distribution of biogenic elements and organic matter in small lakes. Water Resources, 38(3): 352–371. https://doi.org/10.1134/S0097807811010039

Gashkina N.A., Moiseenko T.I. and Kremleva T.A. 2012. Features of distribution of biogenic elements and organic matter in small lakes and limitation of their trophic capacity on the European Territory of Russia and Western Siberia. Bulletin of the Tyumen State University. Ecology and nature management, 12: 17–25. [In Russian].

Gelca R., Hayhoe K., Scott-Fleming I., Crow C., Dawson D. and Patiño R. 2016. Climate–water quality relationships in Texas reservoirs. Hydrological Processes, 30: 12–29. https://doi.org/10.1002/hyp.10545

Gerasimova N.A. 1996. Phytoplankton of the Saratov and Volgograd reservoirs. IBIW publishing house, Tolyatti, 200 p. [In Russian].

Golubkov V. and Golubkov S. 2020. Eutrophication in the Neva estuary (Baltic Sea): response to temperature and precipitation patterns. Marine and Freshwater Research, 71(6): 641–652. https://doi.org/10.1071/MF18422

Henderson-Sellers B. and Markland H.R. 1990. Dying lakes. Causes and control of anthropogenic eutrophication. Hydrometeoizdat, Leningrad, 279 p. [In Russian].

Isles P.D.F., Jonsson A., Creed I.F. and Bergstrom A.-K. 2020. Does browning affect the identity of limiting nutrients in lakes? Aquatic Science, 82(2): 45. https://doi.org/10.1007/s00027-020-00718-y

Kirpichnikova N.V., Lapina E.E. and Kudryashova V.V. 2020. Long-term dynamics of nitrogen and phosphorus concentrations in subsoil water in Ivankovo reservoir drainage basin. Water Resources, 47(5): 721–730. https://doi.org/10.1134/S0097807820050103

Kitaev S.P. 2007. Fundamentals of limnology for hydrobiologists and ichthyologists. Karelian Scientific Center of the Russian Academy of Sciences, Petrozavodsk, 395 p. [In Russian].

Konstantinov A.S. (Ed.). 1977. Volgograd reservoir (population, biological production and self-purification). Saratov University Publishing House, Saratov, 222 p. [In Russian].

Korneva L.G. 2022. Dynamics and distribution of mixotrophic phytoflagellates in large plain reservoirs of the Volga basin. Materials of the IV All-Russian Conference with International Participation: Actual problems of planktology (September 22–30, 2022, Kaliningrad). KSTU, Kaliningrad: 107–110. [In Russian].

Korneva L.G., Lazareva V.I., Mineeva N.M., Sigareva L.E., Sokolova E.A., Timofeeva N.A., Mitropol’skya I.V. and Solovieva V.V. 2019. The state and dynamics of biological communities in the Rybinsk Reservoir under climate changes. Journal of Siberian Federal University. Biology, 12(2): 160–179. [In Russian]. https://doi.org/10.17516/1997-1389-0037

Korneva L.G., Solovieva V.V., Sidelev S.I., Chernova E.N. and Russkikh Ya.V. 2021. Ecology and metabolic activity of cyanobacteria in large diverse plain reservoirs in the European part of Russia. Issues of Modern Algology, 2(26): 29–37. [In Russian]. https://doi.org/10.33624/2311-0147-2021-2(26)-29-37

Kotlyar S.G. 1985. Evaluation criteria for water quality according to hydrochemical indicators. Collection of scientific papers GosNIORKh: Chemistry and Toxicology of Wastewater, 241: 74–83. [In Russian].

Kotlyar S.G., Lizina N.N., Mosiyash S.S. and Shashulovskaya E.A. 2004. Ecosystem approach to the regulation of the content of biogenic elements in a reservoir. Scientific Notebooks of FGNU GosNIORKh, 9: 1–36. [In Russian].

Machado K.B., Vieira L.C.G. and Nabout J.C. 2019. Predicting the dynamics of taxonomic and functional phytoplankton compositions in different global warming scenarios. Hydrobiologia, 830: 115–134. https://doi.org/10.1007/s10750-018-3858-7

Martynova M.V. 1984. Nitrogen and phosphorus in bottom sediments of lakes and reservoirs. Nauka, Moscow, 159 p. [In Russian].

Mineeva N.M. 2019. Content of photosynthetic pigments in the Upper Volga reservoirs (2005–2016). Inland Water Biology, 12(2): 161–169. https://doi.org/10.1134/S199508291902010X

Mineeva N.M., Korneva L.G. and Solovieva V.V. 2016. Influence of environmental factors on phytoplankton photosynthetic activity in the Volga River reservoirs. Inland Water Biology, 9(3): 258–267. https://doi.org/10.1134/S1995082916030160

Mineeva N.M., Poddubny S.A., Stepanova I.E. and Tsvetkov A.I. 2022. Abiotic factors and their role in the development of phytoplankton in the reservoirs of the Middle Volga. Inland Water Biology, 6: 640–651. [In Russian]. https://doi.org/10.1134/S1995082922060141

Mineeva N.M., Stepanova I.E. and Semadeni I.V. 2021. Biogenic elements and their significance in the development of phytoplankton in reservoirs of the Upper Volga. Inland Water Biology, 14(1): 32–42. https://doi.org/10.1134/S1995082921010089

Nebol’sina T.K. (Ed.). 1980. Fishery development and bioproduction possibilities of the Volgograd reservoir. Saratov University Publishing House, Saratov, 264 р. [In Russian].

Pyrina I.L. and Lyashenko G.F. 2005. Long-term dynamics of phytoplankton and higher aquatic vegetation productivity and their role in the production of organic matter in the overgrown Ivankovsky reservoir. Inland Water Biology, 3: 48–56. [In Russian].

Radbourne A.D., Elliott J.A., Maberly S.C., Ryves D.B. and Anderson N.J. 2019. The impacts of changing nutrient load and climate on a deep, eutrophic, monomictic lake. Freshwater Biology, 64: 1169–1182. https://doi.org/10.1111/fwb.13293

Rizhinashvili A.L. 2022. An outline of the theory of the functioning of aquatic ecosystems: nutrient limitation. Biology Bulletin Reviews, 12: 596–608. https://doi.org/10.1134/s2079086422060068

Rizhinashvili A.L. and Maksimova O.B. 2017. Evaluation of the availability of primary production in a small lake and its trophic status. Hydrobiological Journal, 53(6): 31–42. [In Russian]. https://doi.org/10.1615/hydrobj.v54.i2.30

Salmaso N., Boscaini A., Capelli C. and Cerasino L. 2018. Ongoing ecological shifts in a large lake are driven by climate change and eutrophication: evidences from a three-decade study in Lake Garda. Hydrobiologia, 824: 177–195. https://doi.org/10.1007/s10750-017-3402-1

Scott J.T., McCarthy M.J. and Paerl H.W. 2019. Nitrogen transformations differentially affect nutrient-limited primary production in lakes of varying trophic state. Limnology and Oceanography Letters, 4(4): 96–104. https://doi.org/10.1002/lol2.10109

Shashulovskaya E.A., Mosiyash S.A. and Dalechina I.N. 2021. Long-term changes in the main indicators of the trophic state of the large plain reservoir under the influence of climatic transformation and successional processes. Inland Water Biology, 14(6): 627–637. https://doi.org/10.1134/S1995082921060110

Shashulovskaya E.A. 2022. On the need for regional regulation of organic matter and biogenic elements in the Lower Volga reservoirs. Water industry of Russia: Problems, Technologies, Management, 1: 25–38. [In Russian]. https://doi.org/10.35567/19994508_2022_1_2

Shashulovskaya E.A. and Mosiyash S.A. 2022. Spatio-temporal variability of hydrochemical indicators of the Iriklinskii reservoir in modern conditions. Izvestiya RAN. Geographic Series, 5: 697–714. [In Russian]. https://doi.org/10.31857/S2587556622050119

Shashulovskaya E.A., Mosiyash S.A., Dalechina I.N., Filimonova I.G., Grishina L.V., Kuzina E.G. and Shashulovskaya O.V. 2020. Dynamics of trophic indicators of a small flat reservoir in different periods of its existence (on the example of the Penza reservoir on the Sura River). Journal of Siberian Federal University. Biology, 13(4): 368–386. [In Russian]. https://doi.org/10.17516/1997-1389-0334

Shashulovskaya E.A., Mosiyash S.A., Filimonova I.G., Grishina L.V. and Kuzina E.G. 2016. Hydrochemical foundations of biological productivity in the closing reservoirs of the Volga cascade. Proceedings of the Zoological Institute of the Russian Academy of Sciences, 320(3): 367–376. [In Russian]. https://doi.org/10.31610/trudyzin/2016.320.3.367

Shashulovsky V.A. and Mosiyash S.S. 2010. The formation of biological resources of the Volgograd reservoir during the succession of its ecosystem. KMK, Moscow, 250 p. [In Russian].

Shashulovsky V.A., Mosiyash S.S., Ermolin V.P., Dalechina I.N., Jayani E.A., Mosiyash S.A., Sonina E.E., Filinova E.I. and Shashulovskaya E.A. 2014. Development of the ecosystem and bioresource potential of the Volgograd reservoir at the beginning of the 21st century. Fisheries, S: 49–55. [In Russian].

Smith V.H. 1982. The nitrogen and phosphorus dependence of algal biomass in lakes: an empirical and theoretical analysis. Limnology and Oceanography, 23: 1248–1255. https://doi.org/10.4319/lo.1982.27.6.1101

Stepanova I.E. 2021. Analysis of the relationship between the degree of development of phytoplankton estimated by chlorophyll "a", with the content of biogenic elements in the Rybinsk reservoir. Izvestiya RAN. Biological Series, 2: 177–183. [In Russian]. https://doi.org/10.31857/S0002332921020119

Vasiliev D.Yu., Vodopyanov V.V., Semenov V.A. and Chibilev A.A. 2020. Analysis of trends in aridity changes for the Southern Urals region over the period 1960–2019 using various methods. Doklady Earth Sciences, 494(1): 748–752. [In Russian]. https://doi.org/10.1134/S1028334X20090214

Veraart A.J., De Klein J.J. and Schеffer M. 2011. Warming can boost denitrification disproportionately due to altered oxygen dynamics. PLoS One, 6(3): e18508. https://doi.org/10.1371/journal.pone.0018508

Winder M. and Sommer U. 2012. Phytoplankton response to a changing climate. Hydrobiologia, 698: 5–16. https://doi.org/10.1007/s10750-012-1149-2

Zakonnov V.V., Filippov O.V., Baranova M.S., Kochetkova A.I. and Zakonnova A.V. 2021. Spatial-temporal transformation of the soil complex of the Volga reservoirs. Message 8. Formation of the banks and bed of the Volgograd reservoir. Water economy of Russia: Problems, Technologies, Management, 6: 6–28. [In Russian]. https://doi.org/10.35567/1999-4508-2021-6-1

Zhezherya V.A., Zhezherya T.P. and Linnik P.M. 2021. Biogenic rivers near the waters of the Dnieper cascades after regulation of the Dnieper runoff. Hydrobiological Journal, 6: 89–109. [In Ukrainian]. https://doi.org/10.1615/hydrobj.v58.i2.70

Zohary T., Flaim G. and Sommer U. 2021. Temperature and the size of freshwater phytoplankton. Hydrobiologia, 848(1): 143–155. https://doi.org/10.1007/s10750-020-04246-6

 

© Зоологический институт Российской академии наук
Последнее изменение: 25 марта 2024 г.