Позднечетвертичные сообщества землероек Soricidae Урала и Дальнего Востока России: протокол формирования многофакторного морфопространства

Л.Л. Войта, В.Е. Омелько, Е.П. Изварин, Ю.Э. Кропачева, Е.О. Эйдинова, Ю.А. Шемякина, В.С. Никифорова, Т.В. Струкова и Н.Г. Смирнов

Труды Зоологического института РАН, 2023, 327(3): 555–590   ·   https://doi.org/10.31610/trudyzin/2023.327.3.555

Полный текст  

Резюме

Статья представляет собой попытку разработки протокола анализа позднеплейстоценовых и голоценовых палеосообществ землероек с использованием современных подходов к анализу морфологических данных. Вначале мы оценили возможности коллекций ископаемых землероек из местонахождений Урала и Дальнего Востока для комплексного межрегионального анализа фенотипической изменчивости. В соответствии с этим для выявления общих и частных реакций палеосообществ на климатические флуктуации в работе впервые в общем контексте приводится видовой список и хронологическое положение ископаемых выборок уральских и дальневосточных землероек с точки зрения межрегиональных и внутрирегиональных сопоставлений. Далее в соответствии с современными подходами мы подготовили 182 трехмерные модели нижних челюстей или изолированных m1 и построили морфопространство формы m1 для семи видов Sorex из верхнеплейстоценового слоя MKl-13 и среднеголоценового слоя MKl-7 пещеры Медвежий Клык (Южное Приморье, Россия). Современные выборки из Восточной Сибири (Якутия) и севера Дальнего Востока (Магаданская обл., Камчатский кр., Хабаровский кр.; «холодные» условия обитания) и Южного Приморья («теплые» условия) были включены в морфопространство для актуализации возможных откликов ископаемых выборок на позднечетвертичные колебания климата. Наш анализ выявил: (1) слабую реакцию формы m1 почти всех видов на «холодные» и «теплые» условия среды, кроме S. daphaenodon Thomas, 1907 и S. caecutiens Laxmann, 1788; (2) две группы видов, «генерализованные» и «специализированные» по форме m1, в соответствии с представлениями о распределении трофических ниш среди синтопирующих землероек; (3) диагностический признак для видового определения материала по S. unguiculatus Dobson, 1890 и S. isodon Turov, 1924 в ископаемых выборках.

Ключевые слова

Восточная Сибирь, голоцен, Дальний Восток, ископаемые местонахождения, коллекции млекопитающих, морфопространство, палеосообщество, поздний плейстоцен, R-статистика, Урал, μCT, Sorex, Soricidae

Поступила в редакцию 16 апреля 2023 г.  ·  Принята в печать 14 августа 2023 г.  ·  Опубликована 25 сентября 2023 г.

Литература

Adler D. and Murdoch D. 2023. Package ‘rgl’, Version 0.1.3. Available from: https://cran.r-project.org/web/packages/rgl/rgl.pdf (accessed 03 April 2023).

Andersen K.K., Svensson A., Johnsen S.J., Rasmussen S.O., Bigler M., Röthlisberger R. and Dahl-Jensen D. 2006. The Greenland Ice Core chronology 2005, 15–42ka. Part 1: constructing the time scale. Quaternary Science Reviews, 25: 3246–3257. https://doi.org/10.1016/j.quascirev.2006.08.002

Bobretsov A.V. 2016. Population ecology of small mammals in the plains and mountain landscapes of the North-East of the European part of Russia. Publishing house KMK, Moscow, 381 p. [In Russian].

Bolshakov V.N., Vasil'ev A.G. and Sharova L.P. 1996. Fauna and population ecology of Ural shrews (Mammalia, Soricidae). Publishing house "Ekaterinburg", Ekaterinburg, 268 p. [In Russian].

Bond G.C. and Lotti R. 1995. Iceberg discharges into the North Atlantic on millennial time scales during the Last Glaciation. Science, 267(5200): 1005–1010. https://doi.org/10.1126/science.267.5200.1005

Bookstein F.L. 1991. Morphometric tools for landmark data: Geometry and biology. Cambridge University Press, New York, 435 p. https://doi.org/10.1002/bimj.4710350416

Borodin A., Markova E., Zinovyev E., Strukova T., Fominykh M. and Zykov S.V. 2013. Quaternary rodent and insect faunas of the Urals and Western Siberia: connection between Europe and Asia. Quaternary International, 284: 132–150. https://doi.org/10.1016/j.quaint.2011.07.050

Botka D. and Mészáros L. 2016. Sorex (Mammalia, Soricidae) remains from the late Early Pleistocene Somssich Hill 2 locality (Villány Hills, Southern Hungary). Fragmenta Palaeontologica Hungarica, 33: 135–154. https://doi.org/10.17111/FragmPalHung.2016.33.135

Botka D. and Mészáros L. 2017. Asoriculus and Neomys (Mammalia, Soricidae) remains from the late Early Pleistocene Somssich Hill 2 locality (Villány Hills, Southern Hungary). Fragmenta Palaeontologica Hungarica, 34: 105–125. https://doi.org/10.17111/FragmPalHung.2017.34.105

Churchfield S. 1994. Foraging strategies of shrews, and the evidence from field studies. In: J.F. Merritt, G.L. Kirkland Jr. and R.K. Rose (Eds). Advances in the biology of Shrews. Carnegie Museum of Natural History, Pittsburg: 77–88.

Cignoni P., Callieri M., Corsini M., Dellepiane M., Ganovelli F. and Ranzuglia G. 2008. MeshLab: an open-source mesh processing tool. In: V. Scarano, R. De Chiara and U. Erra (Eds). Eurographics Italian Chapter Conference. The Eurographics Association, Salerno: 129–136.

Claude J. 2008. Morphometrics with R. Springer New York, New York, 316 p. https://doi.org/10.1007/978-0-387-77789-4

Cohen K.M. and Gibbard P.L. 2019. Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500. Quaternary International, 500: 20–31. https://doi.org/10.1016/j.quaint.2019.03.009

Davies T.J., Meiri S., Barracloug T.G. and Gittleman J.L. 2007. Species co-existence and character divergence across carnivores. Ecology Letters, 10: 146–152. https://doi.org/10.1111/j.1461-0248.2006.01005.x

Dokuchaev N.E. 1990. Ecology of shrews in North-East Asia. Nauka, Moscow, 160 p. [In Russian].

Eble G.J. 2000. Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic atelostomate echinoids. Paleobiology, 26: 56–79. https://doi.org/10.1666/0094-8373(2000)026<0056:CEFISG>2.0.CO;2

Eble G.J. 2002. Developmental morphospaces and evolution. In: J.P. Crutchfield and P. Schuster (Eds). Evolution dynamics. Oxford University Press, Oxford: 35–65.

Ellenbroek F.J.M. 1980. Interspecific competition in the shrews Sorex araneus and Sorex minutus (Soricidae, Insectivora): a population study of the Irish pygmy shrew. Journal of Zoology, 192(1): 119–136. https://doi.org/10.1111/j.1469-7998.1980.tb04223.x

Fadeeva T. 2016. Insectivorous mammals (Lipotyphla, Soricidae) of the Perm Pre-Ural in the Late Pleistocene and Holocene time. Quaternary International, 420: 156–170. https://doi.org/10.1016/j.quaint.2015.10.074

Foote M. 1988. Survivorship analysis of Cambrian and Ordovician trilobites. Paleobiology, 14: 258–271. https://doi.org/10.1017/S0094837300011994

Foote M. 1991. Morphologic patterns of diversification: examples from trilobites. Palaeontology, 34: 461–485.

Foote M. 1992. Rarefaction analysis of morphological and taxonomy diversity. Paleobiology, 18: 1–16. https://doi.org/10.1017/S0094837300012185

Foote M. 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology, 25: 1–115. https://doi.org/10.1017/S0094837300020236

Hammer Ø., Harper D.A.T. and Ryan P.D. 2001. PAST: paleontological statistics soft-ware package for and data analysis. Palaeontologia Electronica, 4: 1–9. Available from: http://palaeoelectronica.org/2001_1/past/issue1_01.htm (accessed 03 April 2023).

Hanski I. 1994. Population biological consequences of body size in Sorex. In: J.F. Merritt, G.L. Kirkland Jr. and R.K. Rose (Eds). Advances in the biology of Shrews. Carnegie Museum of Natural History, Pittsburg: 15–26.

Kirkland G.L., Jr. 1991. Competition and coexistence in shrews (Insectivora, Soricidae). In: J.S. Findley and T.L. Yates (Eds). The biology of the Soricidae. Special Publication. The Museum of Southwestern Biology, University of New Mexico, Albuquerque: 15–22.

Klingenberg C.P. 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11: 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x

Lebrun R. 2018. MorphoDig. Available from: https://morphomuseum.com/morphodig (accessed 03 April 2023).

Lisiecki L.E. and Raymo M.E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20: PA1003. https://doi.org/10.1029/2004PA001071

Meloro C. 2011. Morphological disparity in Plio-Pleistocene large carnivore guilds from Italian peninsula. Acta Palaeontologica Polonica, 56: 33–44. https://doi.org/10.4202/app.2010.0037

Nesterenko V.A. 1999. Insectivores of the South Far East and their communities. Dalnauka, Vladivostok, 173 p. [In Russian, with English summary].

O’Higgins P. and Jones N. 2006. Tools for statistical shape analysis. Hull York Medical School, York.

Ochocińska D. and Taylor J.R.E. 2003. Bergmann's rule in shrews: geographic variation of body size in Palearctic Sorex species. Biological Journal of Linnaean Society, 78: 356–381. https://doi.org/10.1046/j.1095-8312.2003.00150.x

Omelko V.E. and Kholin S.K. 2017. Secular variability of brown-toothed shrews (Sorex, Eulipotyphla) from the Southern Sikhote-Alin in the Late Quaternary. Zoologicheskii Zhurnal, 96: 222–231. [In Russian, with English summary].

Omelko V.E., Kuzmin Y.V., Tiunov M.P., Voyta L.L. and Burr G.S. 2020. Late Pleistocene and Holocene small mammal (Lipotyphla, Rodentia, Lagomorpha) remains from Medvezhyi Klyk Cave in the Southern Russian Far East. Proceedings of the Zoological Institute RAS, 324: 124–145. https://doi.org/10.31610/trudyzin/2020.324.1.124

Panasenko V.E. and Tiunov M.P. 2010. The population of small mammals (Mammalia: Eulipotyphla, Rodentia, Lagomorpha) on the southern Sikhote-Alin in the Late Pleistocene and Holocene. Vestnik of the Far East Branch of the Russian Academy of Sciences, 6: 60–67. [In Russian with English summary].

Polly P.D. 2001. On morphological clocks and paleophylogeography: towards a timescale for Sorex hybrid zones. Genetica, 112–113: 339–357. https://doi.org/10.1023/A:1013395907225

Polly P.D. 2003. Paleophylogeography of Sorex araneus: molar shape as a morphological marker for fossil shrews. Mammalia, 67: 233–242. https://doi.org/10.1515/mamm.2003.67.2.233

Polly P.D. 2007. Phylogeographic differentiation in Sorex araneus: morphology in relation to geography and karyotype. Russian Journal of Theriology, 6: 73–84. https://doi.org/10.15298/rusjtheriol.06.1.11

Polly P.D. and Wójcik J.M. 2019. Geometric morphometric tests for phenotypic divergence between chromosomal races. In: J.B. Searle, J. Zima and P.D. Polly (Eds). Shrews, chromosomes and speciation. Cambridge University Press, Cambridge: 336–364. https://doi.org/10.1017/9780511895531.011

Prost S., Klietmann J., van Kolfschoten T., Guralnick R.P., Waltari E., Vrieling K., Stiller M., Nagel D., Rabeder G., Hofreiter M. and Sommer R.S. 2013. Effects of Late Quaternary climate change on Palearctic shrews. Global Change Biology, 19(6): 1865–1874. https://doi.org/10.1111/gcb.12153

Puzachenko A.Yu., Markova A.K., Kosintsev P.A., van Kolfschoten T., van der Plicht J., Kuznetsova T.V., Tikhonov A.N., Ponomarev D.V., Kuitems M. and Bachura O.P. 2017. The Eurasian mammoth distribution during the second half of the Late Pleistocene and the Holocene: Regional aspects. Quaternary International, 445: 71–88. https://doi.org/10.1016/j.quaint.2016.05.019

Railsback L.B., Gibbard P.L., Head M.J., Voarintsoa N.R.G. and Toucanne S. 2015. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews, 111: 94–106. https://doi.org/10.1016/j.quascirev.2015.01.012

Rasmussen S.O., Andersen K.K., Svensson A.M., Steffensen J.P., Vinther B.M., Clausen H.B., Siggaard-Andersen M.-L., Johnsen S.J., Larsen L.B., Dahl-Jensen D., Bigler M., Röthlisberger R., Fischer H., Goto-Azuma K., Hansson M.E. and Ruth U. 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research: Atmospheres, 111: D06102. https://doi.org/10.1029/2005JD006079

Rasmussen S.O., Bigler M., Blockley S.P., Blunier T., Buchardt S.L., Clausen H.B., Cvijanovic I., Dahl-Jensen D., Johnsen S.J., Fischer H., Gkinis V., Guillevic M., Hoek W.Z., Lowe J., Pedro J.B., Popp T., Seierstad I.K., Steffensen J.P., Svensson A.M., Vallelonga P., Vinther B.M., Walker M.J.C. and Winstrup M. 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews, 106: 14–28. https://doi.org/10.1016/j.quascirev.2014.09.007

Razhev D.I., Kosintsev P.A. and Ulitko A.I. 2005. Fauna of large mammals from the Late Pleistocene and Holocene of the Bobylek Cave (Middle Ural). In: P.A. Kosintsev (Ed.). Ural and Siberia faunas at Pleistocene and Holocene times. Rifei publishing house, Chelyabinsk: 190–211. [In Russian].

Reimer P.J., Austin W.E.N., Bard E., Bayliss A., Blackwell P.G., Ramsey C.B., Butzin M., Cheng H., Edwards R.L., Friedrich M. et al. 2020. The INTCAL20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kbp). Radiocarbon, 62: 725–757. https://doi.org/10.1017/RDC.2020.41

Rohlf F.J. 1993. Relative warp analysis and an example of its application to mosquito wings. In: L.F. Marcus, E. Bello and A. Garcia-Valdecasas (Eds). Contributions to morphometrics. Monografias, 8. Museo Nacional de Ciencias Naturales, Madrid: 131–159.

Rohlf F.J. 2015. The tps series of software. Hystrix, 26: 9–12. https://doi.org/10.4404/hystrix-26.1-11264

Rohlf F.J. and Slice D.E. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39: 40–59. https://doi.org/10.2307/2992207

Schlager S. 2017. Morpho and Rvcg – Shape Analysis in R: R-packages for geometric morphometrics, shape analysis and surface manipulations. In: G. Zheng, S. Li and G. Szekely (Eds). Statistical shape and deformation analysis, 1st edition. Academic Press Inc., San Diego: 217–256. https://doi.org/10.1016/B978-0-12-810493-4.00011-0

Schlager S. 2021. Package 'Morpho': Calculations and visualisations related to geometric morphometrics. Available from: https://cran.r-project.org/web/packages/Morpho/Morpho.pdf (accessed 03 April 2023).

Shadrina E.G. and Sheftel B.I. 2007. Common shrew Sorex araneus L. (1758) is a new species for the fauna of Yakutia. Vestnik YaGU, 4(2): 5–7. [In Russian].

Shchipanov N.A., Bobretsov A.V., Kuprianova I.F. and Pavlova S.V. 2011. Interracial and population variability of phenotypic (cranial) characters in the common shrew Sorex araneus L., 1758. Russian Journal of Genetics, 47: 76–86. https://doi.org/10.1134/S1022795411010121

Shchipanov N.A., Sycheva V.B. and Tumasyan F.A. 2016. Morphometric distances and population structuring in the common shrew Sorex araneus L. (Lipotyphla: Soricidae). Biology Bulletin, 43: 437–449. https://doi.org/10.1134/S1062359016050101

Simpson G.G. 1953. The major features of evolution. Columbia University Press, New York, 436 p. https://doi.org/10.7312/simp93764

Smirnov N.G. 1993. Small mammals of the Middle Urals in Late Pleistocene/Holocene. Nauka, Ekaterinburg, 64 p. [In Russian].

Smirnov N.G., Bolshakov V.N., Kosintsev P.A., Panova N.K., Korobeinikov Yu.I., Olshvang V.N., Erokhin N.G. and Bykova G.V. 1990. Historical ecology of animals of the Southern Ural Mountains. UrO AN SSSR, Sverdlovsk, 224 p. [In Russian].

Smirnov N.G., Izvarin E.P., Kuzmina E.A. and Kropacheva Y.E. 2016. Steppe species in the Late Pleistocene and Holocene small mammal community of the Urals. Quaternary International, 420: 136–144. http://doi.org/10.1016/j.quaint.2015.10.112

Strukova T.V., Bachura O.P., Borodin A.V. and Stefanovskii V.V. 2006. Mammal fauna first found in alluvial-speleogenic formations of the Late Neopleistocene and Holocene, Northern Urals, locality Cheremukhovo-1. Stratigraphy and Geological Correlation, 14: 91–101. https://doi.org/10.1134/s0869593806010060

Svensson A., Andersen K., Bigler M., Clausen H.B., Dahl-Jensen D., Davies S.M., Johnsen S.J., Muscheler R., Parrenin F., Rasmussen S.O., Röthlisberger R., Seierstad I., Steffensen J.P. and Vinther B.M. 2008. A 60 000 year Greenland stratigraphic ice core chronology. Climate of the Past, 4: 47–57. https://doi.org/10.5194/cp-4-47-2008

Taylor J.R. 1998. Evolution of energetic strategies in shrews. In: J.M. Wójcik and M. Wolsan (Eds). Evolution of Shrews. Mammal Research Institute, Polish Academy of Sciences, Białowieża: 309–346.

Ulitko A.I. 2006. Holocene mammals from the karst cavities of the Middle Urals. In: A.B. Savinetcky (Ed.). Dynamics of Modern Ecosystems in the Holocene. Proceedings of the Russian Scientific Conference, 2–3 February 2006. KMK, Moscow: 243–247. [In Russian].

Van Valen L. 1971. Adaptive zone and the orders of mammals. Evolution, 25: 420–428. https://doi.org/10.1111/j.1558-5646.1971.tb01898.x

Van Valen L. 1973. A new evolutionary law. Evolutionary Theory, 1: 1–30. https://doi.org/10.7208/9780226115504-022

Vasil'ev A.G. 2021. Conception of morphoniche and evolutionary ecology. KMK Scientific Press, Moscow, 315 p. [In Russian, with English summary].

Voyta L.L., Omelko V.E., Tiunov M.P. and Vinokurova M.A. 2021. When beremendiin shrews disappeared in East Asia, or how we can estimate fossil redeposition. Historical Biology, 33: 2656–2667. https://doi.org/10.1080/08912963.2020.1822354

Voyta L.L., Omelko V.E., Tiunov M.P., Petrova E.A. and Kryuchkova L.Yu. 2022. Temporal variation in soricid dentition: which are first – qualitative or quantitative features? Historical Biology, 34: 1901–1915. https://doi.org/10.1080/08912963.2021.1986040

Werdelin L. and Wesley-Hunt G.D. 2014. Carnivoran ecomorphology: patterns below the family level. Annales Zoologici Fennici, 51: 259–268. https://doi.org/10.5735/086.051.0224

Whitaker J.O. and Richards R.L. 2005. Shrews of Indiana: Late Pleistocene to present. In: J.F. Merritt, S. Churchfield, R. Hutterer and B.I. Sheftel (Eds). Advances in the biology of Shrews. Vol. 2. International Society of Shrew Biologists, New York: 9–29.

Zaitsev M.V. 1992. Insectivorous mammals of the Late Anthropogen of the Southern Urals. In: I.S. Smirnov (Ed). History of modern fauna of the Southern Urals. UrO RAN, Sverdlovsk: 61–80. [In Russian].

Zaitsev M.V. 1998. Late Anthropogene Insectivora from the South Urals with a special reference to diagnostics of red-tooth shrews of the genus Sorex. In: J.J. Saunders, B.W. Styles and G.F. Baryshnikov (Eds). Quaternary paleozoology in the Northern Hemisphere. Illinois State Museum Scientific Papers. Vol. 27. Illinois State Museum, Springfield: 145–158.

Zaitsev M.V. and Osipova V.A. 2005. Taxonomy of middle and late Pleistocene shrews from the Northern Caucasus. In: J.F. Merritt, S. Churchfield, R. Hutterer and B.I. Sheftel (Eds). Advances in the biology of Shrews. Vol. 2. International Society of Shrew Biologists, New York: 49–62.

Zaitsev M.V. and Rzebik-Kowalska B. 2003. Variation and taxonomic value of some mandibular characters in red-toothed shrews of the genus Sorex L. (Insectivora, Soricidae). Russian Journal of Theriology, 2: 97–104. https://doi.org/10.15298/rusjtheriol.2.2.04

Zaitsev M.V., Voyta L.L. and Sheftel B.I. 2014. The mammals of Russia and adjacent territories. Lipotyphlans. Nauka, Saint Petersburg, 391 p. [In Russian].

Zazhigin V.S. and Voyta L.L. 2019. Northern Asian Pliocene–Pleistocene beremendiin shrews (Mammalia, Lipotyphla, Soricidae): a description of material from Russia (Siberia), Kazakhstan, and Mongolia and the paleobiology of Beremendia. Journal of Paleontology, 93: 1234–1257. https://doi.org/10.1017/jpa.2019.51

Zelditch M.L., Swiderski D.L., Sheets H.D. and Fink W.L. 2004. Geometric morphometrics for biologists: A Primer. Elsevier Academic Press, Amsterdam, 437 p. https://doi.org/10.1016/b978-0-12-778460-1.x5000-5

 

© Зоологический институт Российской академии наук
Последнее изменение: 25 марта 2024 г.