Анализ последовательности гена cytb тетратиридиев Mesocestoides Vaillant, 1863 от мелких млекопитающих Дальнего Востока РоссииТруды Зоологического института РАН, 2025, 329(1): 64–73 · https://doi.org/10.31610/trudyzin/2025.329.1.64 Резюме Данная работа продолжает серию статей, посвященных молекулярно-генетическому анализу широко распространенных гельминтов – цестод рода Mesocestoides, паразитирующих (на стадии метацестоды) у мелких млекопитающих. В этой работе мы изучаем генетическое разнообразие Mesocestoides spp. от микромаммалий Дальнего Востока России на примере гена cytb. Впервые у Mesocestoides spp., паразитирующих у хозяев разных родов и видов, обитающих в этом регионе, выявлен полиморфизм нуклеотидной последовательности гена цитохрома b и аминокислотной последовательности кодируемого полипептида. Были выявлены два вида Mesocestoides spp., не относящиеся к генетически подтвержденным видам рода. Один из них обнаружен только у Micromys minutus (Pallas, 1771), добытого в районе села Георгиевка Хабаровского края. Второй вид представлен девятью особями из географически далеких локаций, у которых обнаружено две генетические сублинии и 11 нуклеотидных различий в последовательности гена cytb. Индексы молекулярного разнообразия показывают высокий уровень полиморфизма нуклеотидной последовательности этого гена в генофонде изученного вида Mesocestoides sp. Кроме того, было установлено наличие трех изоформ полипептида цитохрома b. Анализ аминокислотных замен в этих изоформах полипептида и в полипептиде из образца от M. minutus также указывает на принадлежность последнего к отдельному виду. Ключевые слова ген cytb, генетическое разнообразие, Mesocestoides, полипептид, тетратиридий Поступила в редакцию 4 декабря 2024 г. · Принята в печать 4 марта 2025 г. · Опубликована 25 марта 2025 г. Литература Alvi M.A., Alshammari A., Ali R.M.A., Ul Haq S., Bashir R., Li L., Saqib M., Sajid M.S., Ghafoor M., Imran M., Ijaz M.U., Fu B.-Q., Saeed M., Ahmad I., Liu Y.-Y., Yan H.-B. and Jia W.-Z. 2023. Revealing novel cytb and nad5 genes-based population diversity and benzimidazole resistance in Echinococcus granulosus of bovine origin. Frontiers in Veterinary Science, 10: 1191271. https://doi.org/10.3389/fvets.2023.1191271 Bajer A., Alsarraf M., Dwuznik D., Mierzejewska E.J., Kolodziej-Sobocinska M., Behnke-Borowczyk J., Banasiak L., Grzybek M., Tolkacz K., Kartawik N., Stanczak L., Opalinska P., Krokowska-Paluszak M., Gorecki G., Alsarraf M. and Behnke J.M. 2020. Rodents as intermediate hosts of cestode parasites of mammalian carnivores and birds of prey in Poland, with the first data on the life-cycle of Mesocestoides melesi. Parasites & Vectors, 13: 95. https://doi.org/10.1186/s13071-020-3961-2 Bandelt H.J., Forster P. and Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16: 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036 Butvilovsky A.V., Barkovsky E.V., Butvilovsky V.E., Davydov V.V., Chernous E.A. and Khrustalev V.V. 2009. Basic methods of molecular evolution. Belprint, Minsk, 216 p. [In Russian]. Crosbie P.R., Nadler S.A., Platzer E.G., Kerner C., Mariaux J. and Boyce W.M. 2000. Molecular systematics of Mesocestoides spp. (Cestoda: Mesocestoididae) from domestic dogs (Canis familiaris) and coyotes (Canis latrans). Journal of Parasitology, 86: 350–357. https://doi.org/10.1645/0022-3395(2000)086[0350:MSOMSC]2.0.CO;2 Etges F.J. 1991. The proliferative tetrathyridium of Mesocestoides vogae sp. n. (Cestoda). Journal of the Helminthological Society of Washington, 58(2): 181–185. Excoffier L., Laval G. and Schneider S. 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1: 47–50. https://doi.org/10.1177/117693430500100003 Gubányi A. and Eszterbauer E. 1998. Morphological investigation of Mesocestoides (Cestoda, Mesocestoididae) species parasitizing Vulpes vulpes in Hungary. Miscellanea Zoologica Hungarica, 12: 11–19. Hassanin A., Lecointre G. and Tillier S. 1998. The “evolutionary signal” of homoplasy in protein-coding gene sequences and its consequences for a priori weighting in phylogeny. Comptes Rendus de l’Académie des Sciences. Sciences de la Vie, 321(7): 611–620. https://doi.org/10.1016/S0764-4469(98)80464-2 Hrćkova G., Miterpakova M., O’Connor A., Snabel V. and Olson P.D. 2011. Molecular and morphological circumscription of Mesocestoides tapeworms from red foxes (Vulpes vulpes) in central Europe. Parasitology, 138(5): 638–647. https://doi.org/10.1017/S0031182011000047 Kołodziej-Sobocińska M., Stojak J., Kondzior E., Ruczyńska I. and Wójcik J.M. 2019. Genetic diversity of two mitochondrial DNA genes in Spirometra erinaceieuropaei (Cestoda: Diphyllobothridae) from Poland. Journal of Zoological Systematics and Evolutionary Research, 57: 764–777. https://doi.org/10.1111/jzs.12319 Kryštufek B. and Shenbrot G.I. 2022. Voles and lemmings (Arvicolinae) of the Palaearctic region. University Press, Maribor, 437 p. https://doi.org/10.18690/um.fnm.2.2022 Literák I., Tenora F., Letková V., Goldová M., Torres J. and Olson P.D. 2006. Mesocestoides litteratus (Batsch,1786) (Cestoda: Cyclophyllidea: Mesocestoididae) from the red fox: morphological and 18S rDNA characterization of European isolates. Helminthologia, 43: 191–195. https://doi.org/10.2478/s11687-006-0036-7 Nakao M., Yokoyama N., Sako Y., Fukunaga M. and Ito A. 2002. The complete mitochondrial DNA sequence of the cestode Echinococcus multilocularis (Cyclophyllidea: Taeniidae). Mitochondrion, 1(6): 497–509. https://doi.org/10.1016/s1567-7249(02)00040-5 Nei M. 1987. Molecular evolutionary genetics. Columbia University Press, New York, 495 p. https://doi.org/10.7312/nei-92038 Nei M. and Kumar S. 2000. Molecular evolution and phylogenetics. Oxford University Press, New York, 352 p. https://doi.org/10.1093/oso/9780195135848.001.0001 Nickisch-Rosenegk von M., Richard L. and Loos-Frank B. 1999. Contributions to the phylogeny of the Cyclophyllidea (Cestoda) inferred from mitochondrial 12S rDNA. Journal of Molecular Evolution, 48: 586–596. https://doi.org/10.1007/pl00006501 Padgett K.A. and Boyce W.M. 2005. Ants as first intermediate hosts of Mesocestoides on San Miguel Island, USA. Journal of Helminthology, 79: 67–73. https://doi.org/10.1079/joh2005275 Padgett K.A., Nadler S.A., Munson L., Sacks B. and Boyce W.M. 2005. Systematics of Mesocestoides (Cestoda: Mesocestoididae): evaluation of molecular and morphological variation among isolates. Journal of Parasitology, 91: 1435–1443. https://doi.org/10.1645/GE-3461.1 Pospekhova N.A., Pereverzeva V.V. and Dokuchaev N.E. 2018. The first molecular genetic data on the tetrathyridia of the genus Mesocestoides from the red-backed vole from Magadan province. Parazitologiya, 52(5): 382–394. [In Russian]. https://doi.org/10.7868/S0031184718050037 Pospekhova N.A., Pereverzeva V.V., Dokuchaev N.E. and Primak A.A. 2023. Phylogenetic relationships of representatives of the genus Mesocestoides Vaillant, 1863 from small mammals in the East of Russia and Alaska. Bulletin of the North-East Research Center FEB RAS, 3: 67–79. [In Russian]. https://doi.org/10.34078/1814-0998-2023-3-67-79 Pospekhova N.A., Pereverzeva V.V., Dokuchaev N.E. and Primak A.A. 2024. Phylogenetic relationships of Mesocestoides Vaillant, 1863 tetrathyridia from small mammals of Eastern Russia and Alaska based on 18S rRNA gene. Parazitologiya, 58(2): 91–100. [In Russian]. https://doi.org/10.31857/S0031184724020017 Skirnisson K., Jouet D., Ferté H. and Nielsen Ó.K. 2016. Occurrence of Mesocestoides canislagopodis (Rudolphi, 1810) (Krabbe, 1865) in mammals and birds in Iceland and its molecular discrimination within the Mesocestoides species complex. Parasitology Research, 115(7): 2597–2607. https://doi.org/10.1007/s00436-016-5006-5 Tamura K., Stecher G., Peterson D., Filipski A. and Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30: 2725–2729. https://doi.org/10.1093/molbev/mst197 Ulziijargal G., Yeruult C., Khulan J., Gantsetseg C., Wandra T., Yamasaki H. and Narankhajid M. 2020. Molecular identification of Taenia hydatigena and Mesocestoides species based on copro-DNA analysis of wild carnivores in Mongolia. International Journal for Parasitology: Parasites and Wildlife, 11: 72–82. https://doi.org/10.1016/j.ijppaw.2019.12.004 Woolley S., Johnson J., Smith M.J., Crandall K.A. and McClellan D.A. 2003. TreeSAAP: Selection on Amino Acid Properties using phylogenetic trees. Bioinformatics, 19(5): 671–672. https://doi.org/10.1093/bioinformatics/btg043 Wu Y.-D., Dai G.-D., Li L., Littlewood D.T.J., Ohiolei J.A. et al. 2022. Expansion of Cyclophyllidea biodiversity in rodents of Qinghai-Tibet Plateau and the “Out of Qinghai-Tibet Plateau” hypothesis of Cyclophyllideans. Frontiers in Microbiology, 13: 747484. https://doi.org/10.3389/fmicb.2022.747484 Zaleśny G. and Hildebrand J. 2012. Molecular identification of Mesocestoides spp. from intermediate hosts (rodents) in central Europe (Poland). Parasitology Research, 110(2): 1055–1061. https://doi.org/10.1007/s00436-011-2598-7 Zardoya R. and Meyer A. 1996. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Molecular Biology and Evolution, 13: 933–942. https://doi.org/10.1093/oxfordjournals.molbev.a025661 Zhang Y., Zhao W., Yang D., Tian Y., Zhang W. and Liu A. 2018. Genetic characterization of three mitochondrial gene sequences of goat/sheep-derived Coenurus cerebralis and Cysticercus tenuicollis isolates in Inner Mongolia, China. Parasite, 25: 1–6. https://doi.org/10.1051/parasite/2018002 Zhong X., Wang N., Hu D., Wang J., Liu T., Gu X., Wang S., Peng X. and Yang G. 2014. Sequence analysis of cytb gene in Echinococcus granulosus from western China. Korean Journal of Parasitology, 52(2): 205–209. https://doi.org/10.3347/kjp.2014.52.2.205 Yanchev Y. 1986. Morphology, taxonomy and distribution of the species of the genus Mesocestoides Vaillant, 1863 in Bulgaria. Khelmintologiya, 21: 45–65. Yang D., Ren Y., Fu Y., Xie Y., Nie H., Nong X., Gu X., Wang S., Peng X. and Yang G. 2013. Genetic variation of Taenia pisiformis collected from Sichuan, China, based on the mitochondrial cytochrome b gene. Korean Journal of Parasitology, 51(4): 449–452. https://doi.org/10.3347/kjp.2013.51.4.449
|
© Зоологический институт Российской академии наук
|