Значение ископаемых для реконструкции филогенииТруды Зоологического института РАН, 2013, 317(Приложение 2): Резюме Число современных видов организмов составляет примерно 0.5–1% от общего числа когда-либо существовавших видов, которое оценивается в 0.9–1.6 миллиардов. Из этого числа современных видов организмов ученым известно не более 10%. Таким образом, для молекулярной систематики доступна выборка в 0.1% от общего числа видов, что не достаточно для построения адекватной филогении органического мира на видовом уровне молекулярными методами. Метод скрытых интервалов позволяет количественно оценить степень совпадения кладограммы и геологической летописи, что является мощным инструментом независимого тестирования филогенетических гипотез. Близкие высокие значения индексов скрытых интервалов для большого количества современных филогенетических гипотез, свидетельствуют о том, что геологическая летопись адекватна для познания филогении органического мира. Включение ископаемых в филогенетический анализ может кардинально изменить топологию итоговой кладограммы, поскольку они могут нести существенную информацию об утраченной эволюционной истории. Палеонтологические данные являются единственным источником для калибровки молекулярных часов. Две трети истории жизни на планете Земля уже находятся в прошлом. Поэтому познание филогении органического мира без учета палеонтологических данных принципиально невозможно. Ключевые слова молекулярная систематика, палеонтология, филогенетический анализ, филогения Опубликована 16 сентября 2013 г. Литература Angielczyk K.D. and Fox D.L. 2006. Exploring new uses for measures of fit of phylogenetic hypotheses to the fossil record. Paleobiology, 32: 147–165. https://doi.org/10.1666/05016.1 Archibald J.D. and Deutschman D.H. 2001. Quantitative analysis of the timing of the origin and diversification of extant placental orders. Journal of Mammalian Evolution, 8: 107–124. https://doi.org/10.1023/A:1011317930838 Benton M.J. and Donoghue P.C.J. 2007. Paleontological evidence to date the tree of life. Molecular Biology and Evolution, 24: 889–891. https://doi.org/10.1093/molbev/msm017 Benton M.J., Wills M.A. and Hitchin R. 2000. Quality of the fossil record through time. Nature, 403: 534–537. https://doi.org/10.1038/35000558 Bourlat S.J., Juliusdottir T., Lowe C.J., Freeman R., Aronowicz J., Kirschner M., Lander E.S., Thorndyke M., Nakano H., Kohn A., Heyland A., Moroz L.L., Copley R.R. and Telford M.J. 2006. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature, 444: 85–88. https://doi.org/10.1038/nature05241 Bryant H.N. 1995. The threefold parallelism of Agassiz and Haeckel, and polarity determination in phylogenetic systematics. Biology and Philosophy, 10: 197–217. https://doi.org/10.1007/BF00852245 Cavin L. and Forey P.L. 2007. Using ghost lineages to identify diversification events in the fossil record. Biology Letters, 3: 201–204. https://doi.org/10.1098/rsbl.2006.0602 Cobbett A., Wilkinson M. and Wills M.A. 2007. Fossils impact as hard as living taxa in parsimony analyses of morphology. Systematic Biology, 56: 753–766. https://doi.org/10.1080/10635150701627296 Conway Morris S. and Collins D.H. 1996. Middle Cambrian ctenophores from the Stephen Formation, British Columbia, Canada. Philosophical Transactions of the Royal Society of London, Series B, 351: 279–308. https://doi.org/10.1098/rstb.1996.0024 Donoghue M.J., Doyle J.A., Gauthier J.A., Kluge A.G. and Rowe T.B. 1989. The importance of fossils in phylogeny reconstruction. Annual Review of Ecology and Systematics, 20: 431–460. https://doi.org/10.1146/annurev.es.20.110189.002243 Douzery E.J.P., Snell E.A., Bapteste E., Delsuc F. and Philippe H. 2004. The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils? Proceedings of the National Academy of Sciences, 101: 15386–15391. https://doi.org/10.1073/pnas.0403984101 Funch P. and Kristensen R.M. 1995. Cycliophora is a new phylum with affinities to Entoprocta and Ectoprocta. Nature, 378: 711–714. https://doi.org/10.1038/378711a0 Gauthier J.A., Kluge A.G. and Rowe T.B. 1988. Amniote phylogeny and the importance of fossils. Cladistics, 4: 105–209. https://doi.org/10.1111/j.1096-0031.1988.tb00514.x Glansdorff N., Xu Y. and Labedan B. 2008. The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biology Direct, 3: 29. https://doi.org/10.1186/1745-6150-3-29 Heard S.B. and Mooers A.O. 2000. Phylogenetically patterned speciation rates and extinction risks change the loss of evolutionary history during extinctions. Proceedings of the Royal Society B: Biological Sciences, 267: 613–620. https://doi.org/10.1098/rspb.2000.1046 Hossfeld U. and Lennart O. 2003. The road from Haeckel: the Jena tradition in evolutionary morphology and the origins of “Evo-Devo”. Biology and Philosophy, 18: 285–307. https://doi.org/10.1023/A:1023988119440 Kidwell S. and Sepkoski J.J., Jr. 1999. The nature of the fossil record. Paleontological Society Special Publication, 9: 61–76. https://doi.org/10.1017/S2475262200014015 Lelièvre H., Bagils R.Z. and Rouget I. 2008. Temporal information, fossil record and phylogeny. Comptes Rendus Palevol, 7: 27–36. https://doi.org/10.1016/j.crpv.2007.12.007 Lepage T., Bryant D., Philippe H. and Lartillot N. 2007. A general comparison of relaxed molecular clock models. Molecular Biology and Evolution, 24: 2669–2680. https://doi.org/10.1093/molbev/msm193 Luo Z.-X. 2007. Transformation and diversification in early mammal evolution. Nature, 450: 1011–1019. https://doi.org/10.1038/nature06277 Lyson T.R., Bever G.S., Bhullar B.-A.S., Joyce W.G. and Gauthier J.A. 2010. Transitional fossils and the origin of turtles. Biology Letters, 6: 830–833. https://doi.org/10.1098/rsbl.2010.0371 Markov A.V. and Korotayev A.V. 2007. Phanerozoic marine biodiversity follows a hyperbolic trend. Palaeoworld, 16: 311–318. https://doi.org/10.1016/j.palwor.2007.01.002 McGowan A.J. and Smith A.B. 2008. Are global Phanerozoic marine diversity curves truly global? A study of the relationship between regional rock records and global Phanerozoic marine diversity. Paleobiology, 34: 80–103. https://doi.org/10.1666/07019.1 Mora C., Tittensor D.P., Adl S., Simpson A.G.B. and Worm B. 2011. How many species are there on Earth and in the Ocean? PLoS Biol, 9: e1001127. https://doi.org/10.1371/journal.pbio.1001127 Nee S. and May R.M. 1997. Extinction and the loss of evolutionary history. Science, 278: 692–694. https://doi.org/10.1126/science.278.5338.692 Peters S.E. and Foote M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology, 27: 583–601. https://doi.org/10.1666/0094-8373(2001)027<0583:BITPAR>2.0.CO;2 Pol D., Norell M.A. and Siddall M.E. 2004. Measures of stratigraphic fit to phylogeny and their sensitivity to tree size, tree shape, and scale. Cladistics, 20: 64–75. https://doi.org/10.1111/j.1096-0031.2003.00002.x Raup D.M. 1972. Taxonomic diversity during the Phanerozoic. Science, 177: 1065–1071. https://doi.org/10.1126/science.177.4054.1065 Raup D.M. and Stanley S.M. 1971. Principles of Paleontology. San Francisco, Reading, W.H. Freeman and Co. X+388 p. Smith A.B. 2007. Marine diversity through the Phanerozoic: problems and prospects. Journal of the Geological Society, 164: 731–745. https://doi.org/10.1144/0016/76492006-184 Springer M.S., Burk-Herrick A., Meredith R., Eizirik E., Teeling E.C., O’Brien S.J. and Murphy W.J. 2007. The adequacy of morphology for reconstructing the early history of placental mammals. Systematic Biology, 56: 673–684. https://doi.org/10.1080/10635150701491149 Stanley G.D. and Stürmer W. 1983. The first fossil ctenophore from the Lower Devonian of West Germany. Nature, 303: 518–520. https://doi.org/10.1038/303518a0 Stanley G.D. and Stürmer W. 1987. A new fossil ctenophore discovered by X-rays. Nature, 328: 61–63. https://doi.org/10.1038/328061a0 Theobald D.L. 2010. A formal test of the theory of universal common ancestry. Nature, 465: 219–222. https://doi.org/10.1038/nature09014 Wall P.D., Ivany L.C. and Wilkinson B.H. 2009. Revisiting Raup: exploring the influence of outcrop area on diversity in light of modern sample-standardization techniques. Paleobiology, 35: 146–167. https://doi.org/10.1666/07069.1 Weishampel D.B. 1996. Fossils, phylogeny, and discovery: a cladistic study of the history of tree topologies and ghost lineage durations. Journal of Vertebrate Paleontology, 16: 191–197. https://doi.org/10.1080/02724634.1996.10011307 Wiens J.J. 2003a. Incomplete taxa, incomplete characters, and phylogenetic accuracy: is there a missing data problem? Journal of Vertebrate Paleontology, 23: 297–310. https://doi.org/10.1671/0272-4634(2003)023[0297:ITICAP]2.0.CO;2 Wiens J.J. 2003b. Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology, 52: 528–538. https://doi.org/10.1080/10635150390218330 Wiens J.J. and Morrill M.C. 2011. Missing data in phylogenetic analysis: Reconciling results from simulations and empirical data. Systematic Biology, 60: 719–731. https://doi.org/10.1093/sysbio/syr025 Wilson M.V.H. 1992. Importance for phylogeny of single and multiple stem-group fossil species with examples from freshwater fishes. Systematic Biology, 41: 462–470. https://doi.org/10.1093/sysbio/41.4.462
|
© Зоологический институт Российской академии наук
|