Система птиц (Aves: Neornithes) в начале XXI векаТруды Зоологического института РАН, 2013, 317(Приложение 2): Резюме Приведен краткий обзор исследований, лежащих в основе современной системы птиц. Отмечены несоответствия и сходства отдельных участков филогенетических схем, построенных на основании исследований ядерной, митохондриальной ДНК и морфологии. Предложена компромиссная классификация отрядов птиц, отражающая современные представления о родственных отношениях между семействами современных птиц и учитывающая анагенетическое сходство. Ключевые слова классификация, птицы, система, филогения Опубликована 16 сентября 2013 г. Литература Зеленков Н.В. 2007. Строение и возможный путь эволюционного формирования лапы дятлообразных (Aves: Piciformes). Палеонтологический журнал, 2007(3): 56–63. Зеленков Н.В. 2011. Морфологические гемиплазии в кладистических исследованиях филогении (на примере птиц). Зоологический журнал, 90(7): 883–890. Зиновьев А.В. 2007. Аппарат двуногой локомоции кукушкообразных (Aves: Cuculiformes): сценарий адаптивной эволюции. Зоологический журнал, 86(10): 1250–1258. Зиновьев А.В. 2008. Типы взаимодействия конечных сухожилий длинных глубоких сгибателей пальцев стопы птиц и их возможный генезис. Зоологический журнал, 87(2): 197–205. Жуков В.С. 2004. Хорологический анализ орнитофауны Северной Евразии: ландшафтно-экологический аспект. Аналитический обзор. ГПНТБ, ИСиЭЖ СО РАН, Новосибирск, 182 с. Карху А.А. 1993. Конвергенция в строении плечевого сустава колибри, курообразных и тинаму. В кн.: Е.Н. Курочкин и И.И. Рахимов (Ред.). Достижения и проблемы орнитологии Северной Евразии на рубеже веков: Труды Международной конференции «Актуальные проблемы изучения и охраны птиц Восточной Европы и Северной Азии». Магариф, Казань: 118–132. Коблик Е.А. 2001а. Разнообразие птиц (по материалам экспозиции Зоологического музея МГУ). Издательство МГУ, Москва: Ч. 1. 384 с.; Ч. 2. 400 с.; Ч. 3. 360 с.; Ч. 4. 384 с. Коблик Е.А. 2001б. Систематика птиц: некоторые итоги и перспективы. В кн.: Е.Н. Курочкин и И.И. и Рахимов (Ред.). Достижения и проблемы орнитологии Северной Евразии на рубеже веков: Труды Международной конференции «Актуальные проблемы изучения и охраны птиц Восточной Европы и Северной Азии». Магариф, Казань: 132–149. Корзун Л.П. 1988. К вопросу о трофических адаптациях древесных птиц. Ключевая пищевая адаптация эндемичных мадагаскарских ракшевых (Brachypteraciidae и Leptosomatidae). Зоологический журнал, 67(4): 589–599. Курочкин Е.Н. 1993а. Основные этапы эволюции класса птиц. Автореферат диссертации доктора биологических наук. Палеонтологический институт РАН, Москва, 64 с. Курочкин Е.Н. 1993б. [Рецензия на] Ch.G. Sibley, J.E. Ahlquist “Phylogeny and classification of birds. A study in molecular evolution”. Зоологический журнал, 72(4): 150–154. Курочкин Е.Н. 2006. Параллельная эволюция тероподных динозавров и птиц. Зоологический журнал, 85(3): 283–297. Beddard F.E. 1898. The structure and classification of birds. Longmans, Green, and Co., London, New York and Bombay, 548 р. https://doi.org/10.5962/bhl.title.1202 Berger A.J. 1960. Some anatomical characters of the Cuculidae and the Musophagidae. The Wilson Bulletin, 72(1): 60–103. Bock W.J. 1977. Foundations and methods of evolutionary classification. In: M.K. Hecht, P.C. Goody and B.M. Hecht (Eds.). Major patterns in vertebrate evolution. Plenum Press, New-York: 851–895. https://doi.org/10.1007/978-1-4684-8851-7_29 Bourdon E. 2011. The pseudo-toothed birds (Aves, Odontopterygiformes) and their bearing on the early evolution of modern birds. In: G. Dyke and G. Kaiser (Eds.). Living dinosaurs: the evolutionary history of modern birds. John Wiley and Sons, Ltd., London: 209–234. https://doi.org/10.1002/9781119990475.ch8 Brinkmann J. 2010. Vergleichende Untersuchungen an der Hinterextremität palaeognather Vögel in Hinblick auf deren phylogenetische Systematik. Unpublished PhD thesis. Eberhard Karls Universität, Tübingen. 502 p. Burton P.J.K. 1984. Anatomy and evolution of the feeding apparatus in the avian orders Coraciiformes and Piciformes. Bulletin of the British Museum (Natural History). Zoological Series, 47: 331–443. https://doi.org/10.5962/p.271707 Chiappe L.M. and Dyke G.J. 2002. The Mesozoic radiation of birds. Annual Review of Ecology and Systematics, 33: 91–124. https://doi.org/10.1146/annurev.ecolsys.33.010802.150517 Chojnowski J.L., Kimball R.T. and Braun E.L. 2008. Introns outperform exons in analyses of basal avian phylogeny using clathrin heavy chain genes. Gene, 410: 89–96. https://doi.org/10.1016/j.gene.2007.11.016 Cooper A. and Penny D. 1997. Mass survival of birds across the cretaceous-tertiary boundary: molecular evidence. Science, 275(5303): 1109–1113. https://doi.org/10.1126/science.275.5303.1109 Cracraft J. 1971. The relationships and evolution of the rollers: families Сoraciidae, Brachypteraciidae, and Leptosomatidae. The Auk, 88(4): 723–752. https://doi.org/10.2307/4083834 Cracraft J. 1988. The major clades of birds. In: M.J. Benton (Ed.). The phylogeny and classification of the tetrapods. Clarendon Press, Oxford: 333–355. Cracraft J. 1992. [Review of] Phylogeny and classification of birds. By Charles G. Sibley and Jon E. Ahlquist. Molecular Biology and Evolution, 9(1): 182–186. Cracraft J., Barker F.K., Braun M.J., Harshman J., Dyke G.J., Feinstein J., Stanley S., Cibois A., Schikler P., Beresford P., García-Moreno J., Sorenson M.D., Yuri T. and Mindell D.P. 2004. Phylogenetic relationships among modern birds. In: J. Cracraft and M.J. Donoghue (Eds.). Assembling the tree of life. Oxford University Press, New-York: 468–489. Degnan J.H. and Rosenberg N.A. 2006. Discordance of species trees with their most likely gene trees. PLoS Genetics, 2(5): e68. https://doi.org/10.1371/journal.pgen.0020068 Ericson P.G.P. 1997. Systematic relationships of the palaeogene family Presbyornithidae (Aves: Anseriformes). Zoological Journal. of the Linnean Society, 121(4): 429–483. https://doi.org/10.1111/j.1096-3642.1997.tb01286.x Ericson P.G.P., Anderson C.L., Britton T., Britton T., Elzanowski A., Johansson U.S., Kallersjo M., Ohlson J.I., Parsons T.J., Zuccon D. and Mayr G. 2006. Diversification of Neoaves: integration of molecular sequence data and fossils. Biology Letters, 2(4): 543–547. https://doi.org/10.1098/rsbl.2006.0523 Fain M.G. and Houde P. 2004. Parallel radiations in the primary clades of birds. Evolution, 58(11): 2558–2573. https://doi.org/10.1111/j.0014-3820.2004.tb00884.x Feduccia A. 1995. Explosive evolution in Tertiary birds and mammals. Science, 267: 637–638. https://doi.org/10.1126/science.267.5198.637 Feduccia A. 1999. The origin and evolution of birds. 2nd ed. Yale Univ. Press, New Heaven and London, 466 p. Feduccia A. 2003. ‘Big bang’ for tertiary birds? Trends in Ecology and Evolution, 18(4): 172–176. https://doi.org/10.1016/S0169-5347(03)00017-X García-Moreno J. and Mindell D.P. 2000. Rooting a phylogeny with homologous genes on opposite sex chromosomes (gametologs): a case study using avian CHD. Molecular Biology and Evolution, 17(12): 1826–1832. https://doi.org/10.1093/oxfordjournals.molbev.a026283 García-Moreno J., Sorenson M.D. and Mindell D.P. 2003. Congruent avian phylogenies inferred from mitochondrial and nuclear DNA Sequences. Journal of Molecular Evolution, 57(1): 27–37. https://doi.org/10.1007/s00239-002-2443-9 Gibb G.C., Kardailsky O., Kimball R.T., Brown E.L. and Penny D. 2007. Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Molecular Biology and Evolution, 24(1): 269–280. https://doi.org/10.1093/molbev/msl158 Groth J.G. and Barrowclough G.F. 1999. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Molecular Phylogenetics and Evolution, 12(2): 115–123. https://doi.org/10.1006/mpev.1998.0603 Hackett S.J., Kimball R.T., Reddy S., Bowie R.C.K., Braun E.L., Braun M.J., Chojnowski J.L., Cox W.A., Han K.-L., Harshman J., Huddleston C.J., Marks B.D., Miglia K.J., Moore W.S., Sheldon F.H., Steadman D.W., Witt C.C. and Yuri T. 2008. A phylogenomic study of birds reveals their evolutionary history. Science, 320(5884): 1763–1768. https://doi.org/10.1126/science.1157704 Han K.-L., Braun E.L., Kimball R.T., Reddy S., Bowie R.C.K., Braun M.J., Chojnowski J.L., Hackett S.J., Harshman J., Huddleston C.J., Marks B.D., Miglia K.J., Moore W.S., Sheldon F.H., Steadman D.W., Witt C.C. and Yuri T. 2011. Are transposable element insertions homoplasy free?: an examination using the avian tree of life. Systematic Biology, 60(3): 375–386. https://doi.org/10.1093/sysbio/syq100 Härlid A. and Arnason U. 1999. Analyses of mitochondrial DNA nest ratite birds within the Neognathae: supporting a neotenous origin of ratite morphological characters. Proceedings of the Royal Society B: Biological Sciences, 266(1416): 305–309. https://doi.org/10.1098/rspb.1999.0638 Härlid A., Janke A. and Arnason U. 1998. The complete mitochondrial genome of Rhea americana and early avian divergences. Journal of Molecular Evolution, 46(6): 669–679. https://doi.org/10.1007/PL00006347 Harshman J. 1994. Reweaving the tapestry: what can we learn from Sibley and Ahlquist (1990)? Auk, 111(2): 377–388. https://doi.org/10.2307/4088601 Hedges S.B., Simmons M.D., van Dijk M.A.M., Caspers G.-J., de Jong W.W. and Sibley C.G. 1995. Phylogenetic relationships of the hoatzin, an enigmatic South American bird. Proceedings of the National Academy of Sciences of the United States of America, 92(25): 11662–11665. https://doi.org/10.1073/pnas.92.25.11662 Holland B.R., Spencer H.G., Worthy T.H. and Kennedy M. 2010. Identifying cliques of convergent characters: concerted evolution in cormorant and shags. Systematic Biology, 59(4): 433–445. https://doi.org/10.1093/sysbio/syq023 Houde P. 1988. Paleognathous birds from the early Tertiary of the Northern Hemisphere. Cambridge, Massachusets: Nuttal Ornithological Club. Hughes J.M. 2000. Monophyly and phylogeny of cuckoos (Aves, Cuculidae) inferred from osteological characters. Zoological Journal of the Linnean Society, 130: 263–307. https://doi.org/10.1111/j.1096-3642.2000.tb01632.x James F.C. and Pourtless J.A. 2009. Cladistics and the origin of birds: a review and two new analyses. Ornithological Monographs, 66: 1–78. https://doi.org/10.1525/om.2009.66.1.1 Johansson U.S. and Ericson P.G.P. 2003. Molecular support for a sister group relationship between Pici and Galbulae (Piciformes sensu Wetmore 1960). Journal of Avian Biology, 34(2): 185–197. https://doi.org/10.1034/j.1600-048X.2003.03103.x Johansson U.S., Parsons T.J., Irestedt M. and Ericson P.G.P. 2001. Clades within the `higher land birds’, evaluated by nuclear DNA sequences. Journal of Zoological Systematics and Evolutionary Research, 39(1): 37–51. https://doi.org/10.1046/j.1439-0469.2001.00153.x Johnson K.P. 2001. Taxon sampling and the phylogenetic position of Passeriformes: evidence from 916 avian cytochrome b sequences. Systematic Biology, 50(1): 128–136. https://doi.org/10.1093/sysbio/50.1.128 Korzun L.P., Erard C., Gasc J.-P. and Dzerzhinsky F.J. 2003. Biomechanical features of the bill and jaw apparatus of cuckoos, turacos and the hoatzin in relation to food acquisition and processing. Ostrich, 74(1–2): 48–57. https://doi.org/10.2989/00306520309485369 Krajewski C. 1991. [Review of] Phylogeny and classification of birds: a study in molecular evolution. Auk, 108(4): 987–990. Livezey B.C. and Zusi R.L. 2006. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. I. Bulletin of Carnegie Museum of Natural History, 37: 1–544. https://doi.org/10.2992/0145-9058(2006)37[1:PON]2.0.CO;2 Livezey B.C. and Zusi R.L. 2007. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zoological Journal of the Linnean Society, 149(1): 1–95. https://doi.org/10.1111/j.1096-3642.2006.00293.x Makovicky P.J. and Zanno L.E. 2011. Theropod diversity and the refinement of avian characteristics. In: G. Dyke and G. Kaiser (Eds.). Living dinosaurs: the evolutionary history of modern birds. John Wiley and Sons, Ltd., London: 9–29. https://doi.org/10.1002/9781119990475.ch1 Martin L.D. 2004. A basal archosaurian origin for birds. Acta Zoologica Sinica, 50(6): 978–990. Manegold A. 2005. Zur Phylogenie und Evolution der "Racken"-, Specht- und Sperlingsvögel ("Coraciiformes", Piciformes und Passeriformes: Aves). Dissertation.de, Berlin: 274 р. Mayr G. 2004. Morphological evidence for sister group relationship between flamingos (Aves: Phoenicopteridae) and grebes (Podicipedidae). Zoological Journal of the Linnean Society, 140(2): 157–169. https://doi.org/10.1111/j.1096-3642.2003.00094.x Mayr G. 2008a. The higher-level phylogeny of birds – when morphology, molecules, and fossils coincide. Oryctos, 7: 67–73. Mayr G. 2008b. Avian higher-level phylogeny: well-supported clades and what we can learn from a phylogenetic analysis of 2954 morphological characters. Journal of Zoological Systematics and Evolutionary Research, 46(1): 63–72. https://doi.org/10.1111/j.1439-0469.2007.00433.x Mayr G. 2008c. The Madagascan “Cuckoo-roller” (Aves: Leptosomidae) is not a roller – notes on the phylogenetic affinities and evolutionary history of a “living fossil”. Acta Ornithologica, 43(2): 226–230. https://doi.org/10.3161/000164508X395360 Mayr G. 2011a. Cenozoic mystery birds – on the phylogenetic affinities of bony-toothed birds (Pelagornithidae). Zoologica Scripta, 40(5): 448–467. https://doi.org/10.1111/j.1463-6409.2011.00484.x Mayr G. 2011b. Metaves, Mirandornithes, Strisores, and other novelties – a critical review of the higher-level phylogeny of neornithine birds. Journal of Zoological Systematics and Evolutionary Research, 49(1): 58–76. https://doi.org/10.1111/j.1439-0469.2010.00586.x Mayr G. and Clarke J.A. 2003. The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics, 19(6): 527–553. https://doi.org/10.1111/j.1096-0031.2003.tb00387.x Mayr G., Pohl B. and Peters D.S. 2005. A well-preserved Archaeopteryx specimen with theropod features. Science, 310(5753): 1483–1486. https://doi.org/10.1126/science.1120331 McKitrick M.C. 1991. Phylogenetic analysis of avian hindlimb musculature. Miscellaneous Publications. Museum of Zoology, University of Michigan, 179: 1–87. Mindell D.P., Sorenson M.D., Huddleston, C.J., Miranda H.C., Knight A., Sawchuk S.J. and Yuri T. 1997. Phylogenetic relationships among and within select avian orders based on mitochondrial DNA. In: D.P. Mindell (Ed.). Avian molecular evolution and systematics. Academic Press, San Diego, London, Boston, New-York, Sydney, Tokyo, Toronto: 214–247. https://doi.org/10.1016/B978-012498315-1/50014-5 Mindell D.P., Sorenson M.D., Dimcheff D.E., Hasegawa M., Ast J.C. and Yuri T. 1999. Interordinal relationships of birds and other reptiles based on whole mitochondrial genomes. Systematic Biology, 48(1): 138–152. https://doi.org/10.1080/106351599260490 Mlíkovský J. 1982. Towards a new classification of birds. In: Il’ichev V.D., Gavrilov V.M. (Eds.). Acta XVIII international ornithological congressus. Nauka, Moscow: 1145–1146. Mlíkovský J. 2002. Cenosoic birds of the world. Part 1: Europe. Ninox press: Praha, 406 р. Morgan-Richards M., Trewick S.A., Bartosch-Härlid A., Kardailsky O., Phillips M.J., McLenachan P.A. and Penny D. 2008. Bird evolution: testing the Metaves clade with six new mitochondrial genomes. BMC Evolutionary Biology, 8: 20. https://doi.org/10.1186/1471-2148-8-20 O’Hara R.J. 1991. [Review of] Phylogeny and classification of birds: a study in molecular evolution. Auk, 108(4): 990–994. Olson S.L. 1985. The fossil record of birds. In: D.S. Farner, J.R. King and K.C. Parkes (Eds.). Avian Biology. Volume 8. Academic Press, New-York: 79–238. https://doi.org/10.1016/B978-0-12-249408-6.50011-X Olson S.L. 1992. A new family of primitive landbirds from the lower Eocene green river formation of Wyoming. Natural History Museum of Los Angeles County, Science Series, 36: 128–136. Pacheco M.A., Battistuzzi F.U., Lentino M., Aguilar R.F., Kumar S. and Escalante A.A. 2011. Evolution of modern birds revealed by mitogenomics: timing the radiation and origin of major orders. Molecular Biology and Evolution, 28(6): 1927–1942. https://doi.org/10.1093/molbev/msr014 Paton T., Haddrath O. and Baker A.J. 2002. Complete mitochondrial DNA genome sequences show that modern birds are not descended from transitional shorebirds. Proceedings of the Royal Society B: Biological Sciences, 269(1493): 839–846. https://doi.org/10.1098/rspb.2002.1961 Poe S. and Chubb A.L. 2004. Birds in a bush: five genes indicate explosive evolution of avian orders. Evolution, 58(2): 404–415. https://doi.org/10.1111/j.0014-3820.2004.tb01655.x Pratt R.C., Gibb G.C., Morgan-Richards M., Phillips M.J., Hendy M.D. and Penny D. 2009. Toward resolving deep neoaves phylogeny: data, signal enhancement, and priors. Molecular Biology and Evolution, 26(2): 313–326. https://doi.org/10.1093/molbev/msn248 Sheldon F.H. and Bledsoe A.H. 1993. Avian molecular systematics, 1970s to 1990s. Annual Review of Ecology and Systematics, 24: 243–278. https://doi.org/10.1146/annurev.es.24.110193.001331 Sibley C.G. and Ahlquist J.E. 1972. A comparative study of the egg white proteins of non-passerine birds. Peabody Museum Bulletin, 39: 1–276. Sibley C.G. and Ahlquist J.E. 1973. The relationships of the Hoatzin. Auk, 90(1): 1–13. Sibley C.G. and Ahlquist J.E. 1990. Phylogeny and classification of birds: a study in molecular evolution. Yale University Press, New Heaven, London: 976 р. https://doi.org/10.2307/j.ctt1xp3v3r Sibley C.G., Ahlquist J.E. and Monroe B.L. 1988. A classification of birds of the World based on DNA-DNA hybridization studies. Auk, 105(3): 409–423. https://doi.org/10.1093/auk/105.3.409 Slack K.E., Delsuc F., McLenachan P.A., Arnason U. and Penny D. 2007. Resolving the root of the avian mitogenomic tree by breaking up long branches. Molecular Phylogenetics and Evolution, 42(1): 1–13. https://doi.org/10.1016/j.ympev.2006.06.002 Sorenson M.D., Oneal E., García-Moreno J. and Mindell D.P. 2003. More taxa, more characters: the hoatzin problem is still unresolved. Molecular Biology and Evolution, 20(9): 1484–1499. https://doi.org/10.1093/molbev/msg157 Stapel S.O., Leunissen J.A.M., Versteeg M., Wattel J. and de Jong W.W. 1984. Ratites as oldest offshoot of avian stem–evidence from α-crystallin A sequences. Nature, 311: 257–259. https://doi.org/10.1038/311257a0 Stresemann E. 1959. The status of avian systematics and its unsolved problems. Auk, 76(3): 269–280. https://doi.org/10.2307/4081807 Suh A., Paus M., Kiefmann M., Churakov G., Franke F.A., Brosius J., Kriegs J.O. and Schmitz J. 2011. Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nature communications, 2: 443. https://doi.org/10.1038/ncomms1448 Van Tuinen M., Sibley C.G. and Hedges S.B. 2000. The early history of modern birds inferred from DNA sequences of nuclear and mitochondrial ribosomal genes. Molecular Biology and Evolution, 17(3): 451–457. https://doi.org/10.1093/oxfordjournals.molbev.a026324 Van Tuinen M., Butvill D.B., Kirsch J.A.W. and Hedges S.B. 2001. Convergence and divergence in the evolution of aquatic birds. Proceedings of the Royal Society B: Biological Sciences, 268: 1345–1350. https://doi.org/10.1098/rspb.2001.1679 Wägele J.W. 2004. Hennig’s phylogenetic systematics brought up to date. In: D.M. Williams and P.L. Forey (Eds.). Milestones in systematics. CRC Press, Boca Raton, London, New York, Washington DC: 101–125. https://doi.org/10.1201/9780203643037.ch5 Wetmore A. 1960. A classification for the birds of the world. Smithsonian Miscellaneous collections, 139(1): 1–37. Woodbury C.J. 1998. Two spinal cords in birds: novel insights into early avian evolution. Proceedings of the Royal Society B: Biological Sciences, 265: 1721–1729. https://doi.org/10.1098/rspb.1998.0494 Xu X. 2006. Feathered dinosaurs from China and evolution of major avian character. Integrative Zoology, 1(1): 4–11. https://doi.org/10.1111/j.1749-4877.2006.00004.x Xu X., You H., Du K. and Han F. 2011. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature, 475(7357): 465–470. https://doi.org/10.1038/nature10288 Zander R.H. 2011. Structuralism in phylogenetic systematics. Biological Theory, 5(4): 383–394. https://doi.org/10.1162/BIOT_a_00063
|
© Зоологический институт Российской академии наук
|